Computer Science ›› 2022, Vol. 49 ›› Issue (1): 115-120.doi: 10.11896/jsjkx.201200192
• Database & Big Data & Data Science • Previous Articles Next Articles
CHEN Jin-peng, HU Ha-lei, ZHANG Fan, CAO Yuan, SUN Peng-fei
CLC Number:
[1]WANG C Y,ZHANG M,MA W Z,et al.Make It a Chorus:Knowledge -and Time-aware Item Modeling for Sequential Re-commendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:109-118. [2]STEFFEN R,CHRISTOPH F,LARS S.Factorizing persona-lized markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web.2010:811-820. [3]WANG P F,GUO J F,LAN Y Y,et al.Learning hierarchical representation model for next basket recommendation[C]//Proceedings of the 38th International ACM SIGIR Conference on Reasearch and Development in Information Retrieval.2015:403-412. [4]RUINING H,JULIAN M.Fusing Similarity Models with Mar-kov Chains for Sparse Sequential Recommendation[C]//2016 IEEE 16th International Conference on Data Mining (ICDM).2016:191-200. [5]RUSLAN S,ANDRIY M,GEOFFREY H.Restricted Boltz-mann machines for collaborative filtering[C]//Proceedings of the 24th International Conference and Machine Learning.2007:791-798. [6]LECUN Y,BOTTOU L,BENGIO Y.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [7]ZHENG L,NOROOZI V,YU P S.Joint Deep Modeling of Users and ItemsUsing Reviews for Recommendation[C]//Proceedings of the Tenth ACM International Conference on Web Search and Data Mining.2017:425-434. [8]TANG J X,WANG K.Personalized Top-N Sequential Recom-mendation via Convolutional Sequence Embedding[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining.2018:565-573. [9]SUN K,QIAN T,CHEN T,et al.Where to Go Next:Modeling Long-and Short-Term User Preferences for Point-of-Interest Recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:214-221. [10]GUO Q,SUN Z,ZHANG J,et al.An Attentional Recurrent Neural Network for Personalized Next Location Recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:83-90. [11]LIU D,LIAN J,WANG S,et al.KRED:Knowledge-Aware Do-cument Representation for News Recommendations[C]//Fourteenth ACM Conference on Recommender Systems.2020:200-209. [12]ZHAN W J,HONG Z L,FANG L P,et al.Collaborative Filtering Recommendation Algorithm Based on Adversarial Learning[J].Computer Science,2021,48(7):172-177. [13]LIANG H H,GU T L,BIN C Z,et al.Combining User-end and Item-end Knowledge Graph Learning for Personalized Recommendation[J].Computer Science,2021,48(5):109-116. [14]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[J].Advances in Neural Information Processing Systems,2013,26:2787-2795. [15]STEFFEN R,CHRISTOPH F,ZENO G.BPR:Bayesian perso-nalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence.2009:452-461. [16]ALEXANDROS K,XAVIER A,LINAS B.Multiverse recom-mendation:n-dimensional tensor factorization for context-aware collaborative filtering[C]//Proceedings of the 4th ACM Confe-rence on Recommender Systems.2010:79-86. [17]BALÁZS H,ALEXANDROS K,LINAS B.Session-based re-commendations with recurrent neural networks[C]//International Conference on Learning Representations.2016:1-10. [18]PABLO L,CHEN L,YU H.Modeling user session and intent with an attention-based encoder-decoder architecture[C]//Proceedings of the 11th ACM Conference on Recommender Systems.2017:147-151. [19]ZHANG Y F,AI Q Y,CHEN X,et al.Learning over know-ledge-base embeddings for recommendation[C]//Special Interest Group on Information Retrieval.2018:8-12. [20]WANG C Y,ZHANG M,MA W Z,et al.Modeling Item-Specific Temporal Dynamics of Repeat Consumption for Recommender Systems[C]//The World Wide Web Conference.2019:1977-1987. |
[1] | ZHOU Le-yuan, ZHANG Jian-hua, YUAN Tian-tian, CHEN Sheng-yong. Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion [J]. Computer Science, 2022, 49(9): 155-161. |
[2] | QIN Qi-qi, ZHANG Yue-qin, WANG Run-ze, ZHANG Ze-hua. Hierarchical Granulation Recommendation Method Based on Knowledge Graph [J]. Computer Science, 2022, 49(8): 64-69. |
[3] | FANG Yi-qiu, ZHANG Zhen-kun, GE Jun-wei. Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning [J]. Computer Science, 2022, 49(8): 70-77. |
[4] | CHEN Yong-quan, JIANG Ying. Analysis Method of APP User Behavior Based on Convolutional Neural Network [J]. Computer Science, 2022, 49(8): 78-85. |
[5] | ZHU Cheng-zhang, HUANG Jia-er, XIAO Ya-long, WANG Han, ZOU Bei-ji. Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism [J]. Computer Science, 2022, 49(8): 113-119. |
[6] | SHUAI Jian-bo, WANG Jin-ce, HUANG Fei-hu, PENG Jian. Click-Through Rate Prediction Model Based on Neural Architecture Search [J]. Computer Science, 2022, 49(7): 10-17. |
[7] | QI Xiu-xiu, WANG Jia-hao, LI Wen-xiong, ZHOU Fan. Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning [J]. Computer Science, 2022, 49(7): 18-24. |
[8] | DAI Zhao-xia, LI Jin-xin, ZHANG Xiang-dong, XU Xu, MEI Lin, ZHANG Liang. Super-resolution Reconstruction of MRI Based on DNGAN [J]. Computer Science, 2022, 49(7): 113-119. |
[9] | LIU Yue-hong, NIU Shao-hua, SHEN Xian-hao. Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network [J]. Computer Science, 2022, 49(7): 127-131. |
[10] | XU Ming-ke, ZHANG Fan. Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition [J]. Computer Science, 2022, 49(7): 132-141. |
[11] | WU Zi-bin, YAN Qiao. Projected Gradient Descent Algorithm with Momentum [J]. Computer Science, 2022, 49(6A): 178-183. |
[12] | ZHANG Jia-hao, LIU Feng, QI Jia-yin. Lightweight Micro-expression Recognition Architecture Based on Bottleneck Transformer [J]. Computer Science, 2022, 49(6A): 370-377. |
[13] | WANG Jian-ming, CHEN Xiang-yu, YANG Zi-zhong, SHI Chen-yang, ZHANG Yu-hang, QIAN Zheng-kun. Influence of Different Data Augmentation Methods on Model Recognition Accuracy [J]. Computer Science, 2022, 49(6A): 418-423. |
[14] | SUN Jie-qi, LI Ya-feng, ZHANG Wen-bo, LIU Peng-hui. Dual-field Feature Fusion Deep Convolutional Neural Network Based on Discrete Wavelet Transformation [J]. Computer Science, 2022, 49(6A): 434-440. |
[15] | CAI Xiao-juan, TAN Wen-an. Improved Collaborative Filtering Algorithm Combining Similarity and Trust [J]. Computer Science, 2022, 49(6A): 238-241. |
|