Computer Science ›› 2024, Vol. 51 ›› Issue (11A): 231100106-9.doi: 10.11896/jsjkx.231100106
• Information Security • Previous Articles Next Articles
YANG Yongping1, WANG Siting2
CLC Number:
[1]China Internet Network Security Report 2020 [R].https://www.cert.org.cn/publish/main/upload/File/2020%20Annual%20Report.pdf. [2]MOORE A W,PAPAGIANNAKI K.Toward the accurate identification of network ap-plications[C]//PAM 2005:Proceedings of the 2005 International Workshop on Passive and Active Network Measurement,LNCS 3431.Berlin:Springer,2005:41-45. [3]GU Y,LI D,GAO K G.Research on Network traffic Classifica-tion based on Machine Learning and Deep Learning[J].Telecommunication Science,2021,37(3):105-113. [4]KONG L,HUANG G,WU K,Identification of Abnormal Network Traffic Using Support Vector Machine[C]//2017 18th International Conference on Parallel and Distributed Computing,Applications and Technologies(PDCAT).2017:288-292. [5]IMAN S,LASHKARI H,GHORBANI A,et al.Toward Gene-rating a New Intrusion Detection Dataset and Intrusion Traffic Characterization[C]//International Conference on Information Systems Security and Privacy.2018:108-116. [6]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-basedlearning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [7]GRAVES A,MOHAMED A R,HINTON G E.Speech recognition with deep recurrent neural networks[C]//2013 IEEE International Conference on Acoustics,Speech and Signal Processing.2013:6645-6649. [8]REZAEI S,LIU X.Deep learning for encrypted traffic classification:An overview[J].IEEE Communications Magazine,57(5):2019:76-81. [9]LOTFOLLAHI M,JAFARI SIAVOSHANI M,SHIRALIHOSSEIN ZADE R,et al.Deep packet:a novel approach for encrypted traffic classification using deep learning[J].Soft Computing,2020,24(3):1999-2012. [10]LOPEZ-MARTIN M,CARRO B,SANCHEZ-ESGUEVILLASA,et al.Network traffic classifier with convolutional and recurrent neural networks for Internet of Things[J].IEEE Access,2017(5):18042-18050. [11]WANG W,ZHU M,ZENG X W,et al.Malware traffic classification using convolutional neural network for representation learning[C]//2017 International Conference on Information Networking(ICOIN).Da Nang,Vietnam,2017:712-717. [12]CIREGAN D,MEIER U,SCHMIDHUBER J.Multi-columndeep neural networks for image classification[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition.Providence,RI,USA,2012:3642-3649. [13]LECUN Y,JACKEL L D,BOTTOU L,et al.Learning Algorithms for Classification:A Comparison on Handwritten Digit Recognition[C]//Neural Networks:The Statistical Mechanics Perspective.1995. [14]WANG W,SHENG Y Q,WANG J L,et al.HAST-IDS:Learning Hierarchical Spatial-Temporal Features Using Deep Neural Networks to Improve Intrusion Detection[J].IEEE Access,2018(6):1792-1806. [15]LIU Y F,CAI S,YANG H X,et al.Network Intrusion Detection Method Integrating CNN and BiLSTM [J].Computer Engineering,2019,45(12):127-133. [16]DENG X,LIU Z H,OUYANG Y,et al.Identification of encrypted Malicious traffic based on CNN CBAM-BiGRU Attention [J].Computer Engineering,2023,49(11):178-186. [17]PACHECO F,EXPOSITO E,GINESTE M,et al.Towards the Deployment of Machine Learning Solutions in Network Traffic Classification:A Systematic Survey[J].IEEE Communications Surveys & Tutorials,Secondquarter 2019,21(2):1988-2014. [18]ZHOU F Y,JIN L P,DONG J.Review of Convolutional neural network [J].Chinese Journal of Computers,2017,40(6):1229-1251. [19]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].arXiv:1412.3555,2014. [20]CHUNG J Y,GULCEHRE C,CHO K,et al.Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling[J]arXiv:1412.3555,2014. [21]OYELAKIN A,AMEEN A O,OGUNDELE T S,et al.Overview and Exploratory Analyses of CICIDS 2017 Intrusion Detection Dataset[J/OL].https://api.semanticscholar.org/CorpusID:262063000. [22]MASEER Z K,YUSOF R,BAHAMAN N,et al.Benchmarking of Machine Learning for Anomaly Based Intrusion Detection Systems in the CICIDS2017 Dataset[J].IEEE Access,2021(9):22351-22370. |
[1] | DU Yu, YU Zishu, PENG Xiaohui, XU Zhiwei. Padding Load:Load Reducing Cluster Resource Waste and Deep Learning Training Costs [J]. Computer Science, 2024, 51(9): 71-79. |
[2] | XU Jinlong, GUI Zhonghua, LI Jia'nan, LI Yingying, HAN Lin. FP8 Quantization and Inference Memory Optimization Based on MLIR [J]. Computer Science, 2024, 51(9): 112-120. |
[3] | SUN Yumo, LI Xinhang, ZHAO Wenjie, ZHU Li, LIANG Ya’nan. Driving Towards Intelligent Future:The Application of Deep Learning in Rail Transit Innovation [J]. Computer Science, 2024, 51(8): 1-10. |
[4] | KONG Lingchao, LIU Guozhu. Review of Outlier Detection Algorithms [J]. Computer Science, 2024, 51(8): 20-33. |
[5] | TANG Ruiqi, XIAO Ting, CHI Ziqiu, WANG Zhe. Few-shot Image Classification Based on Pseudo-label Dependence Enhancement and NoiseInterferenceReduction [J]. Computer Science, 2024, 51(8): 152-159. |
[6] | XIAO Xiao, BAI Zhengyao, LI Zekai, LIU Xuheng, DU Jiajin. Parallel Multi-scale with Attention Mechanism for Point Cloud Upsampling [J]. Computer Science, 2024, 51(8): 183-191. |
[7] | ZHANG Junsan, CHENG Ming, SHEN Xiuxuan, LIU Yuxue, WANG Leiquan. Diversified Label Matrix Based Medical Image Report Generation [J]. Computer Science, 2024, 51(8): 200-208. |
[8] | GUO Fangyuan, JI Genlin. Video Anomaly Detection Method Based on Dual Discriminators and Pseudo Video Generation [J]. Computer Science, 2024, 51(8): 217-223. |
[9] | CHEN Siyu, MA Hailong, ZHANG Jianhui. Encrypted Traffic Classification of CNN and BiGRU Based on Self-attention [J]. Computer Science, 2024, 51(8): 396-402. |
[10] | YANG Heng, LIU Qinrang, FAN Wang, PEI Xue, WEI Shuai, WANG Xuan. Study on Deep Learning Automatic Scheduling Optimization Based on Feature Importance [J]. Computer Science, 2024, 51(7): 22-28. |
[11] | LI Jiaying, LIANG Yudong, LI Shaoji, ZHANG Kunpeng, ZHANG Chao. Study on Algorithm of Depth Image Super-resolution Guided by High-frequency Information ofColor Images [J]. Computer Science, 2024, 51(7): 197-205. |
[12] | SHI Dianxi, GAO Yunqi, SONG Linna, LIU Zhe, ZHOU Chenlei, CHEN Ying. Deep-Init:Non Joint Initialization Method for Visual Inertial Odometry Based on Deep Learning [J]. Computer Science, 2024, 51(7): 327-336. |
[13] | FAN Yi, HU Tao, YI Peng. Host Anomaly Detection Framework Based on Multifaceted Information Fusion of SemanticFeatures for System Calls [J]. Computer Science, 2024, 51(7): 380-388. |
[14] | GAN Run, WEI Xianglin, WANG Chao, WANG Bin, WANG Min, FAN Jianhua. Backdoor Attack Method in Autoencoder End-to-End Communication System [J]. Computer Science, 2024, 51(7): 413-421. |
[15] | HUANG Haixin, CAI Mingqi, WANG Yuyao. Review of Point Cloud Semantic Segmentation Based on Graph Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230400196-7. |
|