Computer Science ›› 2024, Vol. 51 ›› Issue (6A): 230400196-7.doi: 10.11896/jsjkx.230400196
• Artificial Intelligenc • Previous Articles Next Articles
HUANG Haixin, CAI Mingqi, WANG Yuyao
CLC Number:
[1]QI C R,SU H,MOK,et al.Pointnet:Deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:652-660. [2]QI C R,YI L,SUH P N,et al.Deep hierarchical feature learning on point sets in a metric space.arXiv 2017[J].arXiv:1706.02413,2017. [3]HUANG Q,WANG W,NEUMANN U.Recurrent slice net-works for 3d segmentation of point clouds[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:2626-2635. [4]ZHANG S,TONG H,XU J,et al.Graph convolutional net-works:a comprehensive review[J].Computational Social Networks,2019,6(1):1-23. [5]BRUNA J,ZAREMBA W,SZLAM A,et al.Spectral networks and locally connected networks on graphs[J].arXiv:1312.6203,2013. [6]WANG C,SAMARI B,SIDDIQI K.Local spectral graph convolution for point set feature learning[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:52-66. [7]TE G,HU W,ZHENG A,et al.Rgcnn:Regularized graph cnnfor point cloud segmentation[C]//Proceedings of the 26th ACM international conference on Multimedia.2018:746-754. [8]LU Q,CHEN C,XIE W,et al.PointNGCNN:Deep convolutionalnetworks on 3D point clouds with neighborhood graph filters[J].Computers & Graphics,2020,86:42-51. [9]LI W,MA Q,TIAN W,et al.Graph Convolution Network with Double Filter for Point Cloud Segmentation[C]//2020 5th International Conference on Intelligent Informatics and Biomedical Sciences(ICIIBMS).IEEE,2020:168-173. [10]WANG Y,SUN Y,LIU Z,et al.Dynamic graph cnn for learning on point clouds[J].ACM Transactions On Graphics(tog),2019,38(5):1-12. [11]ZHANG K,HAO M,WANG J,et al.Linked dynamic graph cnn:Learning on point cloud via linking hierarchical features[J].arXiv:1904.10014,2019. [12]CHEN L,ZHANG Q.Ddgcn:graph convolution network based on direction and distance for point cloud learning[J].The Visual Computer,2023,39(3):863-873. [13]WANG Y,XIAO S.Affinity-Point Graph Convolutional Net-work for 3D Point Cloud Analysis[J].Applied Sciences,2022,12(11):5328. [14]CHEN C,FRAGONARA L Z,TSOURDOS A.GAPointNet:Graph attention based point neural network for exploiting local feature of point cloud[J].Neurocomputing,2021,438:122-132. [15]WANG L,HUANG Y,HOU Y,et al.Graph attention convolution for point cloud semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:10296-10305. [16]JING W,ZHANG W,LI L,et al.AGNet:An attention-based graph network for point cloud classification and segmentation[J].Remote Sensing,2022,14(4):1036. [17]ZHAI R,ZOU J,HE Y,et al.IAGC:interactive attention graph convolution network for semantic segmentation of point clouds in building indoor environment[J].ISPRS International Journal of Geo-Information,2022,11(3):181. [18]DENG C,PENG Z,CHEN Z,et al.Point Cloud Deep Learning Network Based on Balanced Sampling and Hybrid Pooling[J].Sensors,2023,23(2):981. [19]LI G,MULLER M,THABET A,et al.Deepgcns:Can gcns go as deep as cnns?[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:9267-9276. [20]LI G,XIONG C,THABET A,et al.Deepergcn:All you need to train deeper gcns[J].arXiv:2006.07739,2020. [21]WANG X,JIANG B,ZHANG Z,et al.DeepGCNs-Att for Point Cloud Semantic Segmentation[C]//Journal of Physics:Confe-rence Series.IOP Publishing,2021:012059. [22]HE Q,BANERJEE S,SCHWIEBERT L,et al.AgileGCN:Accelerating Deep GCN with Residual Connections using Structured Pruning[C]//2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval(MIPR).IEEE,2022:20-26. [23]ENGELMANN F,KONTOGIANNI T,LEIBE B.Dilated pointconvolutions:On the receptive field size of point convolutions on 3d point clouds[C]//2020 IEEE International Conference on Robotics and Automation(ICRA).IEEE,2020:9463-9469. [24]WAN J,XIE Z,XU Y,et al.DGANet:A dilated graph attention-based network for local feature extraction on 3D point clouds[J].Remote Sensing,2021,13(17):3484. [25]WANG L,WU J,LIU X,et al.Semantic segmentation of large-scale point clouds based on dilated nearest neighbors graph[J].Complex & Intelligent Systems,2022,8(5):3833-3845. [26]MAO Y,SUN X,DIAO W,et al.Semantic segmentation forpoint cloud scenes via dilated graph feature aggregation and pyramid decoders[J].arXiv:2204.04944,2022. [27]LANDRIEU L,SIMONOVSKY M.Large-scale point cloud semantic segmentation with superpoint graphs[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:4558-4567. [28]GENG Y,WANG Z,JIA L,et al.3DGraphSeg:A unified graph representation-based point cloud segmentation framework for full-range highspeed railway environments[J].IEEE Transactions on Industrial Informatics,2023,19(2):11430-11443. [29]LI Y,MA L,ZHONG Z,et al.TGNet:Geometric graph CNN on 3-D point cloud segmentation[J].IEEE Transactions on Geo-science and Remote Sensing,2019,58(5):3588-3600. [30]WEI M,WEI Z,ZHOU H,et al.AGConv:Adaptive Graph Convolution on 3D Point Clouds[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(8):9374-9392. [31]YANG F,DAVOINE F,WANG H,et al.Continuous conditional random field convolution for point cloud segmentation[J].Pattern Recognition,2022,122:108357. |
[1] | LYU Yiming, WANG Jiyang. Iron Ore Image Classification Method Based on Improved Efficientnetv2 [J]. Computer Science, 2024, 51(6A): 230600212-6. |
[2] | YANG Xiuzhang, WU Shuai, REN Tianshu, LIAO Wenjing, XIANG Meiyu, YU Xiaomin, LIU Jianyi, CHEN Dengjian. Complex Environment License Plate Recognition Algorithm Based on Improved Image Enhancement and CNN [J]. Computer Science, 2024, 51(6A): 220200162-7. |
[3] | SONG Zhen, WANG Jiqiang, HOU Moyu, ZHAO Lin. Conveyor Belt Defect Detection Network Combining Attention Mechanism with Line Laser Assistance [J]. Computer Science, 2024, 51(6A): 230800115-6. |
[4] | WU Chunming, LIU Yali. Method for Lung Nodule Detection on CT Images Using Improved YOLOv5 [J]. Computer Science, 2024, 51(6A): 230500019-6. |
[5] | XIAO Yahui, ZHANG Zili, HU Xinrong, PENG Tao, ZHANG Jun. Clothing Image Segmentation Method Based on Deeplabv3+ Fused with Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230900153-7. |
[6] | YIN Xudong, CHEN Junyang, ZHOU Bo. Study on Industrial Defect Augmentation Data Filtering Based on OOD Scores [J]. Computer Science, 2024, 51(6A): 230700111-7. |
[7] | QIAO Hong, XING Hongjie. Attention-based Multi-scale Distillation Anomaly Detection [J]. Computer Science, 2024, 51(6A): 230300223-11. |
[8] | SI Jia, LIANG Jianfeng, XIE Shuo, DENG Yingjun. Research Progress of Anomaly Detection in IaaS Cloud Operation Driven by Deep Learning [J]. Computer Science, 2024, 51(6A): 230400016-8. |
[9] | DUAN Pengsong, DIAO Xianguang, ZHANG Dalong, CAO Yangjie, LIU Guangyi, KONG Jinsheng. WiCare:Non-contact Fall Monitoring Model for Elderly in Toilet [J]. Computer Science, 2024, 51(6A): 230700044-8. |
[10] | LU Dongsheng, LONG Hua. Method for Homologous Spectrum Monitoring Data Identification Based on Spectrum SIFT [J]. Computer Science, 2024, 51(6A): 230300177-7. |
[11] | WANG Li, CHEN Gang, XIA Mingshan, HU Hao. DUWe:Dynamic Unknown Word Embedding Approach for Web Anomaly Detection [J]. Computer Science, 2024, 51(6A): 230300191-5. |
[12] | WANG Yingjie, ZHANG Chengye, BAI Fengbo, WANG Zumin. Named Entity Recognition Approach of Judicial Documents Based on Transformer [J]. Computer Science, 2024, 51(6A): 230500164-9. |
[13] | LIANG Fang, XU Xuyao, ZHAO Kailong, ZHAO Xuanfeng, ZHANG Guijun. Remote Template Detection Algorithm and Its Application in Protein Structure Prediction [J]. Computer Science, 2024, 51(6A): 230600225-7. |
[14] | PENG Bo, LI Yaodong, GONG Xianfu, LI Hao. Method for Entity Relation Extraction Based on Heterogeneous Graph Neural Networks and TextSemantic Enhancement [J]. Computer Science, 2024, 51(6A): 230700071-5. |
[15] | ZHANG Tianchi, LIU Yuxuan. Research Progress of Underwater Image Processing Based on Deep Learning [J]. Computer Science, 2024, 51(6A): 230400107-12. |
|