Computer Science ›› 2025, Vol. 52 ›› Issue (1): 345-361.doi: 10.11896/jsjkx.240300080
• Information Security • Previous Articles Next Articles
ZHANG Xin1, ZHANG Han1,2, NIU Manyu1, JI Lixia1,3
CLC Number:
[1]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenetclassification with deep convolutional neural networks[C]//Annual Conference on Neural Information Processing Systems.2012. [2]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [3]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [4]REN S Q,HE K M,GIRSHICK R,et al.Faster r-cnn:Towards real-time object detection with region proposal networks[J].arXiv:1506.01497,2015. [5]SZEGEDY C,ZAREMBA W,SUTSKEVER I,et al.Intriguing properties of neural networks[J].arXiv:1312.6199,2013. [6]GOODFELLOW I J,SHLENS J,SZEGEDY C.Explaining and harnessing adversarial examples[J].arXiv:1412.6572,2014. [7]ZHANG J,HUANG Y,WU W,et al.Transferable adversarial attacks on vision transformers with token gradient regularization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:16415-16424. [8]CARLINI N,WAGNER D.Towards evaluating the robustness of neural networks[C]//2017 IEEE Symposium on Security and Privacy(SP).IEEE,2017:39-57. [9]XU H,LI Y,LIU X,et al.Yet meta learning can adapt fast,it can also break easily[C]//Proceedings of the 2021 SIAM International Conference on Data Mining(SDM).Society for Industrial and Applied Mathematics,2021:540-548. [10]KARIMI M P,AMIRKHANI A,SHOKOUHI S B.Robust object detection against adversarial perturbations withgabor filter[C]//2021 29th Iranian Conference on Electrical Engineering(ICEE).IEEE,2021:187-192. [11]WANG L,YOON K J.Psat-gan:Efficient adversarial attacksagainst holistic scene understanding[J].IEEE Transactions on Image Processing,2021,30:7541-7553. [12]ABDULLAH H,RAHMAN M S,GARCIA W,et al.Hear “no evil”,see“kenansville”:Efficient and transferable black-box attacks on speech recognition and voice identification systems[C]//2021 IEEE Symposium on Security and Privacy(SP).IEEE,2021:712-729. [13]CHEN G,CHENB S,FAN L,et al.Who is real bob? adversarial attacks on speaker recognition systems[C]//2021 IEEE Symposium on Security and Privacy(SP).IEEE,2021:694-711. [14]HU Z,HUANG S,ZHU X,et al.Adversarial texture for fooling person detectors in the physical world[C]//Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition.2022:13307-13316. [15]WANG D,JIANG T,SUN J,et al.Fca:Learning a 3d full-cove-rage vehicle camouflage for multi-view physical adversarial attack[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:2414-2422. [16]LIU J,LAU C P,SOURI H,et al.Mutual adversarial training:Learning together is better than going alone[J].IEEE Transactions on Information Forensics and Security,2022,17:2364-2377. [17]HARDER P,PFREUNDT F J,KEUPER M,et al.Spectral-defense:Detecting adversarial attacks on cnns in the fourier domain[C]//2021 International Joint Conference on Neural Networks(IJCNN).IEEE,2021:1-8. [18]DRENKOW N,FENDLEY N,BURLINA P.Attack agnosticdetection of adversarial examples via random subspace analysis[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2022:472-482. [19]LIU Z,CAO C,TAO F,et al.From Spatial to Spectral Domain,a New Perspective for Detecting Adversarial Examples[J/OL].Security and Communication Networks,2022.[2022-09-05].https://doi.org/10.1155/2022.5501035. [20]NADERI H,NOORBAKHSH K,ETEMADI A,et al.Lpf-defense:3d adversarial defense based on frequency analysis[J].Plos one,2023,18(2):e0271388. [21]ZHANG T,YANG K W,WEI J H,et al.A review of adversarial sample detection and defense technology for image data [J].Computer Research and Development,2022,59(6):1315-1328. [22]ALDAHDOOH A,HAMIDOUCHE W,FEZZA S A,et al.Adversarial example detection for DNN models:A review and experimental comparison[J].Artificial Intelligence Review,2022,55(6):4403-4462. [23]ZHOU T,GAN R,XU D W,et al.A review of image adversarial example detection [J/OL].Journal of Software:1-35.[2023-10-23].https://doi.org/10.13328/j.cnki.jos.006834. [24]MADRY A,MAKELOV A,SCHMIDT L,et al.Towards deep learning models resistant to adversarial attacks[J].arXiv:1706.06083,2017. [25]MOOSAVI-DEZFOOLI S M,FAWZI A,FROSSARD P.Deepfool:a simple and accurate method to fool deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2574-2582. [26]XIAO C,LI B,ZHU J Y,et al.Generating adversarial examples with adversarial networks[J].arXiv:1801.02610,2018. [27]PAPERNOT N,MCDANIEL P,JHA S,et al.The limitations of deep learning in adversarial settings[C]//2016 IEEE European Symposium on Security and Privacy(EuroS&P).IEEE,2016:372-387. [28]SU J,VARGAS D V,SAKURAI K.One pixel attack for fooling deep neural networks[J].IEEE Transactions on Evolutionary Computation,2019,23(5):828-841. [29]CHEN P Y,ZHANG H,SHARMA Y,et al.Zoo:Zeroth order optimization based black-box attacks to deep neural networks without training substitute models[C]//Proceedings of the 10th ACM workshop on Artificial Intelligence and Security.2017:15-26. [30]MAO X,CHEN Y,LI Y,et al.Gap++:Learning to generate target-conditioned adversarial examples[J].arXiv:2006.05097,2020. [31]CARRARA F,FALCHI F,CALDELLI R,et al.Detecting adversarial example attacks to deep neural networks[C]//Proceedings of the 15th International Workshop on Content-based Multimedia Indexing.2017:1-7. [32]SHI C,HOLTZ C,MISHNE G.Online adversarial purification based on self-supervision[J].arXiv:2101.09387,2021. [33]XU W,EVANS D,QI Y.Feature squeezing:Detecting adversa-rial examples in deep neural networks[J].arXiv:1704.01155,2017. [34]MA S,LIU Y,TAO G,et al.Nic:Detecting adversa-rial samples with neural network invariant checking[C]//26th Annual Network and Distributed System Security Sympo-sium(NDSS 2019).Internet Soc,2019. [35]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [36]ALDAHDOOH A,HAMIDOUCHE W,DéFORGES O.Revisiting model’s uncertainty and confidences for adversarial example detection[J].Applied Intelligence,2023,53(1):509-531. [37]GEIFMAN Y,EL-YANIV R.Selectivenet:A deep neural network with an integrated reject option[C]//International Confe-rence on Machine Learning.PMLR,2019:2151-2159. [38]HENDRYCKS D,GIMPEL K.A baseline for detecting misclassified and out-of-distribution examples in neural networks[J].arXiv:1610.02136,2016. [39]KULLBACK S,LEIBLER R A.On information and sufficiency[J].The Annals of Mathematical Statistics,1951,22(1):79-86. [40]WIYATNO RR,XU A,DIA O,et al.Adversarial examples in modern machine learning:A review[J].arXiv:1911.05268,2019. [41]ZHENG Z H,HONG P Y.Robust detection of adversarial attacks by modeling the intrinsic properties of deep neural networks[J].Neural Information Processing Systems,2018,31:7924-7933. [42]PAPERNOT N,MCDANIEL P.Deep k-nearest neighbors:Towards confident,interpretable and robust deep learning[J].ar-Xiv:1803.04765,2018. [43]ABUSNAINA A,WU Y,ARORA S,et al.Adversarial example detection using latent neighborhood graph[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:7687-7696. [44]LIANG B,LI H,SU M,et al.Detecting adversarial image examples in deep neural networks with adaptive noise reduction[J].IEEE Transactions on Dependable and Secure Computing,2018,18(1):72-85. [45]WANG Y,LI X,YANG L,et al.ADDITION:Detecting Adversarial Examples With Image-Dependent Noise Reduction[J].IEEE Transactions on Dependable and Secure Computing,2023,21(3):1139-1154. [46]MOORTHY A K,BOVIK A C.Blind image quality assessment:From natural scene statistics to perceptual quality[J].IEEE Transactions on Image Processing,2011,20(12):3350-3364. [47]KHERCHOUCHE A,FEZZA S A,HAMIDOUCHE W,et al.Detection of adversarial examples in deep neural networks with natural scene statistics[C]//2020 International Joint Conference on Neural Networks(IJCNN).IEEE,2020:1-7. [48]MITTAL A,MOORTHY A K,BOVIK A C.No-referenceimage quality assessment in the spatial domain[J].IEEE Transactions on image processing,2012,21(12):4695-4708. [49]GONG Z,WANG W.Adversarial and clean data are not twins[C]//Proceedings of the Sixth International Workshop on Exploiting Artificial Intelligence Techniques for Data Management.2023:1-5. [50]HOSSEINI H,CHEN Y,KANNAN S,et al.Blocking transfera-bility of adversarial examples in black-box learning systems[J].arXiv:1703.04318,2017. [51]LUST J,CONDURACHE A P.Gran:An efficient gradient-norm based detector for adversarial and misclassified examples[J].arXiv:2004.09179,2020. [52]COHEN G,SAPIRO G,GIRYES R.Detecting adversarial samples using influence functions and nearest neighbors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:14453-14462. [53]MA X,LI B,WANG Y,et al.Characterizing adversarial sub-spaces using local intrinsic dimensionality[J].arXiv:1801.02613,2018. [54]LORENZ P,KEUPER M,KEUPER J.Unfolding local growth rate estimates for(almost) perfect adversarial detection[J].ar-Xiv:2212.06776,2022. [55]LEE K,LEE K,LEE H,et al.A simple unified framework for detecting out-of-distribution samples and adversarial attacks[J].arXiv:1807.03888,2018. [56]CHEN K,CHEN Y,ZHOU H,et al.Adversarial examples detection beyond image space[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics,Speech and Signal Proces-sing(ICASSP).IEEE,2021:3850-3854. [57]GROSSE K,MANOHARAN P,PAPERNOT N,et al.On the(statistical) detection of adversarial examples[J].arXiv:1702.06280,2017. [58]GAO R,LIU F,ZHANG J,et al.Maximum mean discrepancy test is aware of adversarial attacks[C]//International Confe-rence on Machine Learning.PMLR,2021:3564-3575. [59]FEINMAN R,CURTIN RR,SHINTRE S,et al.Detecting adversarial samples from artifacts[J].arXiv:1703.00410,2017. [60]DONG C,KUMAR A,LIU E.Think twice before detectinggan-generated fake images from their spectral domain imprints[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:7865-7874. [61]JUNG S,KEUPER M.Spectral distribution aware image gene-ration[C]//Proceedings of the AAAIConference on Artificial Intelligence.2021:1734-1742. [62]LORENZ P,HARDER P,STRABEL D,et al.Detecting auto-attack perturbations in the frequency domain[J].arXiv:2111.08785,2021. [63]CROCE F,HEIN M.Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks[C]//International Conference on Machine Learning.PMLR,2020:2206-2216. [64]MAO X,CHEN Y,LI Y,et al.Learning to characterize adversarial subspaces[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2020:2438-2442. [65]ZHANG C,YANG Z,YE Z.Detecting Adversarial Perturba-tions with Salieny[C]//Proceedings of the 6th International Conference on Information Technology:IoT and Smart City.2018:25-30. [66]PRAKASH A,MORAN N,GARBER S,et al.Deflecting adversarial attacks with pixel deflection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:8571-8580. [67]SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-cam:Visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Confe-rence on Computer Vision.2017:618-626. [68]WANG S,GONG Y.Adversarial example detection based on saliency map features[J].Applied Intelligence,2022(6):6262-6275. [69]VAN DEN OORD A,KALCHBRENNER N,ESPEHOLT L,et al.Conditional image generation with pixelcnn decoders[J].ar-Xiv:1606.05328,2016. [70]SONG Y,KIM T,NOWOZIN S,et al.Pixeldefend:Leveraging generative models to understand and defend against adversarial examples[J].arXiv:1710.10766,2017. [71]KIANI S,AWAN S,LAN C,et al.Two souls in an adversarial image:Towards universal adversarial example detection using multi-view inconsistency[C]//Proceedings of the 37th Annual Computer Security Applications Conference.2021:31-44. [72]WANG H,MILLER D J,KESIDIS G.Anomaly detection of adversarial examples using class-conditional generative adversarial networks[J].Computers & Security,2023,124:102956. [73]FREITAS S,CHEN S T,WANG Z J,et al.Unmask:Adversa-rial detection and defense through robust feature alignment[C]//2020 IEEE International Conference on Big Data(Big Data).IEEE,2020:1081-1088. [74]GONG Y,WANG S,JIANG X,et al.Adversarial example detection using semantic graph matching[J].Applied Soft Computing,2023,141:110317. [75]TAO G H,MA S Q,LIU Y Q,et al.Attacks meet interpretability:Attribute-steered detection of adversarial samples[J].arXiv:1810.11580,2018. [76]QIU Y,LENG J,GUO C,et al.Adversarial defense throughnetwork profiling based path extraction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:4777-4786. [77]NWAIGWE D,CARBONI L,MERMILLOD M,et al.Graph-based methods coupled with specific distributional distances for adversarial attack detection[J].Neural Networks,2024,169:11-19. [78]DENG L.The mnist database of handwritten digit images formachine learning research[J].IEEE Signal Processing Magazine,2012,29(6):141-142. [79]KRIZHEVSKY A,HINTON G.Learning multiple layers of features from tiny images[D].Toronto:University of Toronto,2009. [80]DENG J,DONG W,SOCHER R,et al.ImageNet:A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2009:248-255. [81]LE Y,YANG X.Tiny imagenet visual recognition challenge[J].CS 231N,2015,7(7):3. [82]NETZER Y,WANG T,COATES A,et al.Reading digits in na-tural images with unsupervised feature learning[C]//NIPS Workshop on Deep Lear-ning and Unsupervised Feature Lear-ning.2011:7. [83]NILSBACK M E,ZISSERMAN A.Automated flower classification over a large number of classes[C]//2008 Sixth Indian Conference on Computer Vision,Graphics & Image Processing.IEEE,2008:722-729. [84]LI F F,FERGUS R,PERONA P.Learning generative visual models from few training examples:An incremental bayesian approach tested on 101 object categories[C]//2004 Conference on Computer Vision and Pattern Recognition.IEEE,2004:178. [85]GRIFFIN G,HOLUB A,PERONA P.Caltech-256 object category dataset[R].Pasadena:Technical Report 7694,California Institute of Technology,2007. [86]PINTO N,STONE Z,ZICKLER T,et al.Scaling up biologically-inspired computer vision:A case study in unconstrained face re-cognition on facebook[C]//CVPR 2011.IEEE,2011:35-42. [87]CUKIERSKI W.Dogs vs.cats,2013[J/OL].https://kaggle.com/competitions/dogs-vs-cats. [88]GUVENIR H A,ACAR B,DEMIROZ G,et al.A supervised machine learning algorithm for arrhythmia analysis[C]//Computers in Cardiology 1997.IEEE,1997:433-436. [89]AEBERHARD S,COOMANS D,DE VEL O.Comparative ana-lysis of statistical pattern recognition methods in high dimensional settings[J].Pattern Recognition,1994,27(8):1065-1077. [90]XIAO H,RASUL K,VOLLGRAF R.Fashion-mnist:a novelimage dataset for benchmarking machine learning algorithms[J].arXiv:1708.07747,2017. [91]ILYAS A,SANTURKAR S,TSIPRAS D,et al.Adversarial examples are not bugs,they are features[J].arXiv:1905.02175,2019. [92]ZHU X,WANG H,FEI H,et al.Face forgery detection by 3d decomposition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:2929-2939. [93]GE Y,XIAO Y,XU Z,et al.Contributions of shape,texture,and color in visual recognition[C]//European Conference on Computer Vision.Cham:Springer Nature Switzerland,2022:369-386. [94]ZHEN X,MENG Z,CHAKRABORTY R,et al.On the versatile uses of partial distance correlation in deep learning[C]//European Conference on Computer Vision.Cham:Springer Nature Switzerland,2022:327-346. [95]RADFORD A,KIM J W,HALLACY C,et al.Learning transferable visual models from natural language supervision[C]//International Conference on Machine Learning.PMLR,2021:8748-8763. |
[1] | ZHANG Yusong, XU Shuai, YAN Xingyu, GUAN Donghai, XU Jianqiu. Survey on Cross-city Human Mobility Prediction [J]. Computer Science, 2025, 52(1): 102-119. |
[2] | LIU Yuming, DAI Yu, CHEN Gongping. Review of Federated Learning in Medical Image Processing [J]. Computer Science, 2025, 52(1): 183-193. |
[3] | LI Yujie, MA Zihang, WANG Yifu, WANG Xinghe, TAN Benying. Survey of Vision Transformers(ViT) [J]. Computer Science, 2025, 52(1): 194-209. |
[4] | ZHU Xiaoyan, WANG Wenge, WANG Jiayin, ZHANG Xuanping. Just-In-Time Software Defect Prediction Approach Based on Fine-grained Code Representationand Feature Fusion [J]. Computer Science, 2025, 52(1): 242-249. |
[5] | ZHANG Jian, LI Hui, ZHANG Shengming, WU Jie, PENG Ying. Review of Pre-training Methods for Visually-rich Document Understanding [J]. Computer Science, 2025, 52(1): 259-276. |
[6] | LI Yahe, XIE Zhipeng. Active Learning Based on Maximum Influence Set [J]. Computer Science, 2025, 52(1): 289-297. |
[7] | SU Chaoran, ZHANG Dalong, HUANG Yong, DONG An. RF Fingerprint Recognition Based on SE Attention Multi-source Domain Adversarial Network [J]. Computer Science, 2025, 52(1): 412-419. |
[8] | DU Yu, YU Zishu, PENG Xiaohui, XU Zhiwei. Padding Load:Load Reducing Cluster Resource Waste and Deep Learning Training Costs [J]. Computer Science, 2024, 51(9): 71-79. |
[9] | XU Jinlong, GUI Zhonghua, LI Jia'nan, LI Yingying, HAN Lin. FP8 Quantization and Inference Memory Optimization Based on MLIR [J]. Computer Science, 2024, 51(9): 112-120. |
[10] | SUN Yumo, LI Xinhang, ZHAO Wenjie, ZHU Li, LIANG Ya’nan. Driving Towards Intelligent Future:The Application of Deep Learning in Rail Transit Innovation [J]. Computer Science, 2024, 51(8): 1-10. |
[11] | KONG Lingchao, LIU Guozhu. Review of Outlier Detection Algorithms [J]. Computer Science, 2024, 51(8): 20-33. |
[12] | TANG Ruiqi, XIAO Ting, CHI Ziqiu, WANG Zhe. Few-shot Image Classification Based on Pseudo-label Dependence Enhancement and NoiseInterferenceReduction [J]. Computer Science, 2024, 51(8): 152-159. |
[13] | ZHANG Rui, WANG Ziqi, LI Yang, WANG Jiabao, CHEN Yao. Task-aware Few-shot SAR Image Classification Method Based on Multi-scale Attention Mechanism [J]. Computer Science, 2024, 51(8): 160-167. |
[14] | XIAO Xiao, BAI Zhengyao, LI Zekai, LIU Xuheng, DU Jiajin. Parallel Multi-scale with Attention Mechanism for Point Cloud Upsampling [J]. Computer Science, 2024, 51(8): 183-191. |
[15] | ZHANG Junsan, CHENG Ming, SHEN Xiuxuan, LIU Yuxue, WANG Leiquan. Diversified Label Matrix Based Medical Image Report Generation [J]. Computer Science, 2024, 51(8): 200-208. |
|