Computer Science ›› 2025, Vol. 52 ›› Issue (1): 412-419.doi: 10.11896/jsjkx.231100076
• Information Security • Previous Articles
SU Chaoran, ZHANG Dalong, HUANG Yong, DONG An
CLC Number:
[1]XU Q,ZHENG R,SAAD W,et al.Device fingerprinting inwireless networks:Challenges and opportunities[J].IEEE Communications Surveys & Tutorials,2015,18(1):94-104. [2]ZOU Y,ZHU J,WANG X,et al.A survey on wireless security:Technical challenges,recent advances,and future trends[C]//Proceedings of the IEEE.2016:1727-1765. [3]JAGANNATH A,JAGANNATH J,KUMAR P S P V.A comprehensive survey on radio frequency(rf) fingerprinting:Traditional approaches,deep learning,and open challenges[J].Computer Networks,2022,219:109455. [4]SOLTANIEH N,NOROUZI Y,YANG Y,et al.A review of radio frequency fingerprinting techniques[J].IEEE Journal of Radio Frequency Identification,2020,4(3):222-233. [5]HALL J,BARBEAU M,KRANAKIS E.Radio frequency fin-gerprinting for intrusion detection in wireless networks[J].IEEE Transactions on Defendable and Secure Computing,2005,12:1-35. [6]NICOLUSSI A,TANNER S,WATTENHOFER R.Aircraftfingerprinting using deep learning[C]//2020 28th European Signal Processing Conference(EUSIPCO).IEEE,2021:740-744. [7]CHEN X,WANG L D,XU X,et al.A review of RF fingerprintidentification methods based on Raw I/Q and deep learning[J].Radar Journal,2023,12(1):214-234. [8]LIU P,YANG P,SONG W Z,et al.Real-time identification of rogue WiFi connections using environment-independent physical features[C]//IEEE INFOCOM 2019-IEEE Conference on Computer Communications.IEEE,2019:190-198. [9]BRIK V,BANERJEE S,GRUTESER M,et al.Wireless device identification with radiometric signatures[C]//Proceedings of the 14th ACM International Conference on Mobile Computing and Networking.2008:116-127. [10]SATIJA U,TRIVEDI N,BISWAL G,et al.Specific emitteridentification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J].IEEE Transactions on Information Forensics and Security,2018,14(3):581-591. [11]JIAN T,RENDON B C,OJUBA E,et al.Deep learning for RF fingerprinting:A massive experimental study[J].IEEE Internet of Things Magazine,2020,3(1):50-57. [12]RIYAZ S,SANKHE K,IOANNIDIS S,et al.Deep learning convolutional neural networks for radio identification[J].IEEE Communications Magazine,2018,56(9):146-152. [13]GOPALAKRISHNAN S,CEKIC M,MADHOW U.Robustwireless fingerprinting via complex-valued neural networks[C]//2019 IEEE Global Communications Conference(GLOBECOM).IEEE,2019:1-6. [14]SHEN G,ZHANG J,MARSHALL A,et al.Radio frequencyfingerprint identification for LoRa using spectrogram and CNN[C]//IEEE INFOCOM 2021-IEEE Conference on Computer Communications.IEEE,2021:1-10. [15]SHEN G,ZHANG J,MARSHALL A,et al.Radio frequencyfingerprint identification for LoRa using deep learning[J].IEEE Journal on Selected Areas in Communications,2021,39(8):2604-2616. [16]DU Z,LIU D,ZHANG J,et al.RSEN-RFF:Deep Learning-Based RF Fingerprint Recognition in Noisy Environment[C]//Artificial Intelligence for Communications and Networks:Third EAI International Conference.Springer International Publi-shing,2021:87-99. [17]GU H,SU L,ZHANG W,et al.Attention is needed for RF fingerprinting[J].IEEE Access,2023,11:87316-87329. [18]JIANG Q,SHA J.The Use of SNN for Ultralow-Power RF Fingerprinting Identification with Attention Mechanisms in VDES-SAT[J].IEEE Internet of Things Journal,2023,10(17):15594-15603. [19]WENG L,PENG J,LI J,et al.Message structure aided attentional convolution network for rf device fingerprinting[C]//2020 IEEE/CIC International Conference on Communications in China(ICCC).IEEE,2020:495-500. [20]ZHANG J,WOODS R,SANDELL M,et al.Radio frequency fingerprint identification for narrowband systems,modelling and classification[J].IEEE Transactions on Information Forensics and Security,2021,16:3974-3987. [21]HANNA S,KARUNARATNE S,CABRIC D.WiSig:A large-scale WiFi signal dataset for receiver and channel agnostic RF fingerprinting[J].IEEE Access,2022,10:22808-22818. [22]XIE Q,DAI Z,DU Y,et al.Controllable invariance through adversarial feature learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:585-596. [23]GANIN Y,LEMPITSKY V.Unsupervised domain adaptationby backpropagation[C]//International Conference on Machine Learning.PMLR,2015:1180-1189. [24]WANG J,ZHENG V W,CHEN Y,et al.Deep transfer learning for cross-domain activity recognition[C]//proceedings of the 3rd International Conference on Crowd Science and Enginee-ring.2018:1-8. [25]GUO Y X,YANG W,LIU Q,et al.A review of residual network research[J].Computer Application Research,2020,37(5):1292-1297. [26]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [27]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:3-19. [28]HOU Q,ZHOU D,FENG J.Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:13713-13722. |
[1] | ZHANG Jian, LI Hui, ZHANG Shengming, WU Jie, PENG Ying. Review of Pre-training Methods for Visually-rich Document Understanding [J]. Computer Science, 2025, 52(1): 259-276. |
[2] | LI Yahe, XIE Zhipeng. Active Learning Based on Maximum Influence Set [J]. Computer Science, 2025, 52(1): 289-297. |
[3] | ZHANG Xin, ZHANG Han, NIU Manyu, JI Lixia. Adversarial Sample Detection in Computer Vision:A Survey [J]. Computer Science, 2025, 52(1): 345-361. |
[4] | ZHANG Yusong, XU Shuai, YAN Xingyu, GUAN Donghai, XU Jianqiu. Survey on Cross-city Human Mobility Prediction [J]. Computer Science, 2025, 52(1): 102-119. |
[5] | LIU Yuming, DAI Yu, CHEN Gongping. Review of Federated Learning in Medical Image Processing [J]. Computer Science, 2025, 52(1): 183-193. |
[6] | LI Yujie, MA Zihang, WANG Yifu, WANG Xinghe, TAN Benying. Survey of Vision Transformers(ViT) [J]. Computer Science, 2025, 52(1): 194-209. |
[7] | ZHU Xiaoyan, WANG Wenge, WANG Jiayin, ZHANG Xuanping. Just-In-Time Software Defect Prediction Approach Based on Fine-grained Code Representationand Feature Fusion [J]. Computer Science, 2025, 52(1): 242-249. |
[8] | DU Yu, YU Zishu, PENG Xiaohui, XU Zhiwei. Padding Load:Load Reducing Cluster Resource Waste and Deep Learning Training Costs [J]. Computer Science, 2024, 51(9): 71-79. |
[9] | XU Jinlong, GUI Zhonghua, LI Jia'nan, LI Yingying, HAN Lin. FP8 Quantization and Inference Memory Optimization Based on MLIR [J]. Computer Science, 2024, 51(9): 112-120. |
[10] | CHEN Siyu, MA Hailong, ZHANG Jianhui. Encrypted Traffic Classification of CNN and BiGRU Based on Self-attention [J]. Computer Science, 2024, 51(8): 396-402. |
[11] | SUN Yumo, LI Xinhang, ZHAO Wenjie, ZHU Li, LIANG Ya’nan. Driving Towards Intelligent Future:The Application of Deep Learning in Rail Transit Innovation [J]. Computer Science, 2024, 51(8): 1-10. |
[12] | KONG Lingchao, LIU Guozhu. Review of Outlier Detection Algorithms [J]. Computer Science, 2024, 51(8): 20-33. |
[13] | TANG Ruiqi, XIAO Ting, CHI Ziqiu, WANG Zhe. Few-shot Image Classification Based on Pseudo-label Dependence Enhancement and NoiseInterferenceReduction [J]. Computer Science, 2024, 51(8): 152-159. |
[14] | XIAO Xiao, BAI Zhengyao, LI Zekai, LIU Xuheng, DU Jiajin. Parallel Multi-scale with Attention Mechanism for Point Cloud Upsampling [J]. Computer Science, 2024, 51(8): 183-191. |
[15] | ZHANG Junsan, CHENG Ming, SHEN Xiuxuan, LIU Yuxue, WANG Leiquan. Diversified Label Matrix Based Medical Image Report Generation [J]. Computer Science, 2024, 51(8): 200-208. |
|