Computer Science ›› 2025, Vol. 52 ›› Issue (3): 77-85.doi: 10.11896/jsjkx.240200102
• 3D Vision and Metaverse • Previous Articles Next Articles
ZHONG Yue1, GU Jieming2
CLC Number:
| [1]NING H,WANG H,LIN Y,et al.A Survey on the Metaverse:The State-of-the-Art,Technologies,Applications,and Challenges[J].IEEE Internet of Things Journal,2023,10(16):14671-14688. [2]CHEN X,ZOU D,XIE H,et al.Metaverse in Education:Contributors,Cooperations,and Research Themes[J].IEEE Tran-sactions on Learning Technologies,2023,16(6):1111-1129. [3]NJOKU J N,NWAKANMA C I,AMAIZU G C,et al.Prospects and challenges of Metaverse application in data-driven intelligent transportation systems[J].IET Intelligent Transport Systems,2023,17(1):1-21. [4]WANG G,BADAL A,JIA X,et al.Development of metaverse for intelligent healthcare[J].Nature Machine Intelligence,2022,4(11):922-929. [5]WANG Y,SU Z,ZHANG N,et al.A survey on metaverse:Fundamentals,security,and privacy[J].IEEE Communications Surveys & Tutorials,2022,25(1):319-352. [6]ANCIUKEVIČIUS T,XU Z,FISHER M,et al.Renderdiffusion:Image diffusion for 3d reconstruction,inpainting and gene-ration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:12608-12618. [7]LI J,GAO W,WU Y,et al.High-quality indoor scene 3D reconstruction with RGB-D cameras:A brief review[J].Computa-tional Visual Media,2022,8(3):369-393. [8]GAO C,YU Q,SHENG L,et al.SketchSampler:Sketch-Based 3D Reconstruction via View-Dependent Depth Sampling[C]//Proceedings of the European Conference on Computer Vision.2022:464-479. [9]IGARASHI T,MATSUOKA S,TANAKA H.Teddy:a Sketching Interface for 3D Freeform Design[C]//Proceedings of the Conference on Conputer Graphics and Interactive Techniques.1999:409-416. [10]BAE S H,BALAKRISHNAN R,SINGH K.ILoveSketch:as-natural-as-possible sketching system for creating 3d curve mo-dels[C]//Proceedings of the ACM Symposium on User Interface Software and Technology.2008:151-160. [11]XU B,CHANG W,SHEFFER A,et al.True2Form:3D curve networks from 2D sketches via selective regularization[J].ACM Transactions on Graphics,2014,33(4):1-13. [12]ZHU Z,YANG L,LIN X,et al.GARNet:Global-aware multi-view 3D reconstruction network and the cost-performance tradeoff[J].Pattern Recognition,2023,142:109674. [13]WEN C,ZHANG Y,LI Z,et al.Pixel2mesh++:Multi-view 3d mesh generation via deformation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:1042-1051. [14]CHOY C B,XU D,GWAK J Y,et al.3d-r2n2:A unified approach for single and multi-view 3d object reconstruction[C]//Proceedings of the European Conference on Computer Vision.2016:628-644. [15]WANG N,ZHANG Y,LI Z,et al.Pixel2mesh:Generating 3d mesh models from single rgb images[C]//Proceedings of the European Conference on Computer Vision.2018:52-67. [16]WU J,ZHANG C,ZHANG X,et al.Learning shape priors for single-view 3d completion and reconstruction[C]//Proceedings of the European Conference on Computer Vision.2018:646-662. [17]YAO Y,SCHERTLER N,ROSALES E,et al.Front2back:Single view 3d shape reconstruction via front to back prediction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:531-540. [18]LIU R,WU R,VAN HOORICK B,et al.Zero-1-to-3:Zero-shot one image to 3d object[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:9298-9309. [19]SHRESTHA R,FAN Z,SU Q,et al.Meshmvs:Multi-view ste-reo guided mesh reconstruction[C]//International Conference on 3D Vision.2021:1290-1300. [20]ROSU R A,BEHNKE S.Permutosdf:Fast multi-view reconstruction with implicit surfaces using permutohedral lattices[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:8466-8475. [21]LONG X,LIN C,LIU L,et al.Neuraludf:Learning unsigned distance fields for multi-view reconstruction of surfaces with arbitrary topologies[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:20834-20843. [22]HAN X,GAO C,YU Y.DeepSketch2Face:a deep learningbased sketching system for 3D face and caricature modeling[J].ACM Transactions on Graphics,2017,36(4):1-12. [23]ZHANG S H,GUO Y C,GU Q W.Sketch2model:View-aware 3d modeling from single free-hand sketches[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:6012-6021. [24]WANG J,LIN J,YU Q,et al.3D Shape Reconstruction fromFree-hand Sketches[C]//Proceedings of the European Confe-rence on Computer Vision.2022:184-202. [25]CHEN T,FU C,ZANG Y,et al.Deep3DSketch+:Rapid 3D Modeling from Single Free-Hand Sketches[C]//International Conference on Multimedia Modeling.2023:16-28. [26]LUN Z,GADELHA M,KALOGERAKIS E,et al.3d shape reconstruction from sketches via multi-view convolutional networks[C]//International Conference on 3D Vision.2017:67-77. [27]LI C,PAN H,LIU Y,et al.Robust flow-guided neural prediction for sketch-based freeform surface modeling[J].ACM Transactions on Graphics,2018,37(6):1-12. [28]DELANOY J,AUBRY M,ISOLA P,et al.3d sketching using multi-view deep volumetric prediction[J].Proceedings of the ACM on Computer Graphics and Interactive Techniques,2018,1(1):1-22. [29]ZHOU J,LUO Z,YU Q,et al.GA-Sketching:Shape Modeling from Multi-View Sketching with Geometry-Aligned Deep Implicit Functions[J].Computer Graphics Forum,2023,42(7):e14948. [30]XIE H,YAO H,ZHANG S,et al.Pix2Vox++:Multi-scale context-aware 3D object reconstruction from single and multiple images[J].International Journal of Computer Vision,2020,128(12):2919-2935. [31]YANG B,WANG S,MARKHAM A,et al.Robust attentional aggregation of deep feature sets for multi-view 3D reconstruction[J].International Journal of Computer Vision,2020,128(1):53-73. [32]NEALEN A,SORKINE O,ALEXA M,et al.A Sketch-based Interface for Detail-preserving Mesh Editing[J].ACM Transactions on Graphics,2005,3(24):1142-1147. [33]JADERBERG M,SIMONYAN K,ZISSERMAN A.Spatialtransformer networks[C]//Proceedings of the Conference on Neural Information Processing Systems.2015:2017-2025. [34]NEWMAN T S,YI H.A survey of the marching cubes algorithm[J].Computers & Graphics,2006,30(5):854-879. [35]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [36]LIU Y,SHAO Z,TENG Y,et al.NAM:Normalization-basedattention module[J].arXiv:2111.12419,2021. [37]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision.2018:3-19. [38]ZHANG H,GOODFELLOW I,METAXAS D,et al.Self-attention generative adversarial networks[C]//Proceedings of the International Conference on Machine Learning.2019:7354-7363. [39]FU J,LIU J,TIAN H,et al.Dual attention network for scene segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:3146-3154. [40]SUN Y,WANG Y,LIU Z,et al.Pointgrow:Autoregressivelylearned point cloud generation with self-attention[C]//Procee-dings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2020:61-70. [41]MISRA D,NALAMADA T,ARASANIPALAI A U,et al.Rotate to attend:Convolutional triplet attention module[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2021:3139-3148. [42]IOFFE S,SZEGEDY C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the International Conference on Machine Learning.2015:448-456. [43]ZHONG Y,GRYADITSKAYA Y,ZHANG H,et al.Deepsketch-based modeling:Tips and tricks[C]//International Conference on 3D Vision.2020:543-552. [44]ZHONG Y,QI Y,GRYADITSKAYA Y,et al.Towards practical sketch-based 3d shape generation:The role of professional sketches[J].IEEE Transactions on Circuits and Systems for Video Technology,2020,31(9):3518-3528. [45]WAILLY B,BOUSSEAU A.Line rendering of 3d meshes fordata-driven sketch-based modeling[C]//Journées Francaises d′Informatique Graphique et de Réalité virtuelle.2019. [46]PAN J,HAN X,CHEN W,et al.Deep mesh reconstruction from single rgb images via topology modification networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:9964-9973. [47]MESCHEDER L,OECHSLE M,NIEMEYER M,et al.Occu-pancy networks:Learning 3d reconstruction in function space[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:4460-4470. [48]FAN H,SU H,GUIBAS L J.A point set generation network for 3d object reconstruction from a single image[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:605-613. [49]PARK J J,FLORENCE P,STRAUB J,et al.Deepsdf:Learning continuous signed distance functions for shape representation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:165-174. [50]KONG D,WANG Q,QI Y.A diffusion-refinement model forsketch-to-point modeling[C]//Proceedings of the Asian Confe-rence on Computer Vision.2022:1522-1538. |
| [1] | HUANG Miaomiao, WANG Huiying, WANG Meixia, WANG Yejiang , ZHAO Yuhai. Review of Graph Embedding Learning Research:From Simple Graph to Complex Graph [J]. Computer Science, 2026, 53(1): 58-76. |
| [2] | WANG Cheng, JIN Cheng. KAN-based Unsupervised Multivariate Time Series Anomaly Detection Network [J]. Computer Science, 2026, 53(1): 89-96. |
| [3] | XUE Jingyan, XIA Jianan, HUO Ruili, LIU Jie, ZHOU Xuezhong. Review of Retinal Image Analysis Methods for OCT/OCTA Based on Deep Learning [J]. Computer Science, 2026, 53(1): 128-140. |
| [4] | ZHOU Bingquan, JIANG Jie, CHEN Jiangmin, ZHAN Lixin. EvR-DETR:Event-RGB Fusion for Lightweight End-to-End Object Detection [J]. Computer Science, 2026, 53(1): 153-162. |
| [5] | LYU Jinggang, GAO Shuo, LI Yuzhi, ZHOU Jin. Facial Expression Recognition with Channel Attention Guided Global-Local Semantic Cooperation [J]. Computer Science, 2026, 53(1): 195-205. |
| [6] | FAN Jiabin, WANG Baohui, CHEN Jixuan. Method for Symbol Detection in Substation Layout Diagrams Based on Text-Image MultimodalFusion [J]. Computer Science, 2026, 53(1): 206-215. |
| [7] | WANG Haoyan, LI Chongshou, LI Tianrui. Reinforcement Learning Method for Solving Flexible Job Shop Scheduling Problem Based onDouble Layer Attention Network [J]. Computer Science, 2026, 53(1): 231-240. |
| [8] | CHEN Qian, CHENG Kaixuan, GUO Xin, ZHANG Xiaoxia, WANG Suge, LI Yanhong. Bidirectional Prompt-Tuning for Event Argument Extraction with Topic and Entity Embeddings [J]. Computer Science, 2026, 53(1): 278-284. |
| [9] | LIU Wei, XU Yong, FANG Juan, LI Cheng, ZHU Yujun, FANG Qun, HE Xin. Multimodal Air-writing Gesture Recognition Based on Radar-Vision Fusion [J]. Computer Science, 2025, 52(9): 259-268. |
| [10] | PENG Jiao, HE Yue, SHANG Xiaoran, HU Saier, ZHANG Bo, CHANG Yongjuan, OU Zhonghong, LU Yanyan, JIANG dan, LIU Yaduo. Text-Dynamic Image Cross-modal Retrieval Algorithm Based on Progressive Prototype Matching [J]. Computer Science, 2025, 52(9): 276-281. |
| [11] | GAO Long, LI Yang, WANG Suge. Sentiment Classification Method Based on Stepwise Cooperative Fusion Representation [J]. Computer Science, 2025, 52(9): 313-319. |
| [12] | YIN Shi, SHI Zhenyang, WU Menglin, CAI Jinyan, YU De. Deep Learning-based Kidney Segmentation in Ultrasound Imaging:Current Trends and Challenges [J]. Computer Science, 2025, 52(9): 16-24. |
| [13] | ZENG Lili, XIA Jianan, LI Shaowen, JING Maike, ZHAO Huihui, ZHOU Xuezhong. M2T-Net:Cross-task Transfer Learning Tongue Diagnosis Method Based on Multi-source Data [J]. Computer Science, 2025, 52(9): 47-53. |
| [14] | LI Yaru, WANG Qianqian, CHE Chao, ZHU Deheng. Graph-based Compound-Protein Interaction Prediction with Drug Substructures and Protein 3D Information [J]. Computer Science, 2025, 52(9): 71-79. |
| [15] | LUO Chi, LU Lingyun, LIU Fei. Partial Differential Equation Solving Method Based on Locally Enhanced Fourier NeuralOperators [J]. Computer Science, 2025, 52(9): 144-151. |
|
||