Computer Science ›› 2025, Vol. 52 ›› Issue (2): 336-343.doi: 10.11896/jsjkx.240300031
• Information Security • Previous Articles Next Articles
DING Ruiyang1, SUN Lei1, DAI Leyu1, ZANG Weifei1, XU Bayi1,2
CLC Number:
[1]CHALAPATHY R,CHAWLA S.Deep Learning for Anomaly Detection:A Survey[J].arXiv:1901.03407,2019. [2]JIN K,ZHANG L,ZHANG Y J,et al.A Network Traffic Intrusion Detection Method for Industrial Control Systems Based on Deep Learning[J].Electronics,2023,12(20):4329. [3]KWON D,KIM H,KIM J,et al.A survey of deep learning-based network anomaly detection[J].Cluster Computing,2019,22:949-961. [4]LASHKARI A H,KADIR A F A,GONZALEZ H,et al.Towards a network-based framework for android malware detection and characterization[C]//2017 15th Annual Conference on Privacy,Security and Trust(PST).IEEE,2017. [5]RING M,LANDES D,HOTHO A.Detection of slow port scans in flow-based network traffic[J].PLoS One,2018,13(9):e0204507. [6]LIU J X,SONG X C,ZHOU Y J,et al.Deep anomaly detection in packet payload[J].Neuro computing,2022,485:205-218. [7]REZAEI S,LIU X.Deep learning for encrypted traffic classification:An overview[J].IEEE Communications Sagazine,2019,57(5):76-81. [8]ABBASI M,SHAHRAKI A,TAHERKORDI A.Deep learning for network traffic monitoring and analysis(NTMA):A survey[J].Computer Communications,2021,170:19-41. [9]LI J W,PAN Z S.Network traffic classification based on deep learning[J].KSII Transactions on Internet and Information Systems(TIIS),2020,14(11):4246-4267. [10]LIM H K,KIM J B,HEO J S,et al.Packet-based network traffic classification using deep learning[C]//2019 International Conference on Artificial Intelligence in Information and Communication(ICAIIC).IEEE,2019:46-51. [11]SADEGHZADEH A M,SHIRAVI S,JALILI R.Adversarialnetwork traffic:Towards evaluating the robustness of deep-learning-based network traffic classification[J].IEEE Transactions on Network and Service Management,2021,18(2):1962-1976. [12]WANG Y,LU B,ZHU Y F.Generation and Application of Adversarial Network Traffic:A Survey [J].Computer Science,2022,49(S2):651-661. [13]HU Y J,GUO Y B,MA J,et al.Method to generate cyber deception traffic based on adversarial sample [J].Journal on Communication/Tongxin Xuebao,2020,41(9):59-70. [14]RIGAKI M.Adversarial deep learning against intrusion detection classifiers[J].EUR Workshop Proceedings,2017,2057:35-48. [15]IBITOYE O,SHAFIQ O,MATRAWY A.Analyzing adversarial attacks against deep learning for intrusion detection in IoT networks[C]//2019 IEEE Global Communications Conference(GLOBECOM).IEEE,2019:1-6. [16]HU Y J,TIAN J,MA J.A novel way to generate adversarial network traffic samples against network traffic classification[J].Wireless Communications and Mobile Computing,2021,2021:1-12. [17]YAN Q,WANG M D,HUANG W Y,et al.Automatically synthesizing DoS attack traces using generative adversarial networks[J].International Journal of Machine Learning and Cybernetics,2019,10(12):3387-3396. [18]HASHEMI M J,CUSACK G,KELLER E.Towards evaluation of nidss in adversarial setting[C]//Proceedings of the 3rd ACM Conext Workshop on Big Data,Machine Learning and Artificial Intelligence for Data Communication Networks.2019:14-21. [19]USAMA M,QAYYUM A,QADIR J,et al.Black-box adversa-rial machine learning attack on network traffic classification[C]//2019 15th International Wireless Communications & Mobile Computing Conference(IWCMC).IEEE,2019:84-89. [20]MOOSAVI-DEZFOOLI S M,FAWZI A,FAWZI O,et al.Universal adversarial perturbations[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1765-1773. [21]KRUPSKI J,GRANISZEWSKI W,IWANOWSKI M.Datatransformation schemes for cnn-based network traffic analysis:A survey[J].Electronics,2021,10(16):2042. [22]MOORE A W,ZUEV D.Internet traffic classification usingbayesian analysis techniques[C]//Proceedings of the 2005 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems.Banff,2005:50-60. [23]DRAPER-GIL G,LASHKARI A H,MAMUN M S I,et al.Characterization of encrypted and vpn traffic using time-related[C]//Proceedings of the 2nd International Conference on Information Systems Security and Privacy(ICISSP).2016:407-414. [24]YANG Y H,SUN L,DAI L Y,et al.Generate Transferable Adversarial Network Traffic Using Reversible Adversarial Padding[J].Computer Science,2023,50(12):359-367. |
[1] | ZHOU Lei, SHI Huaifeng, YANG Kai, WANG Rui, LIU Chaofan. Intelligent Prediction of Network Traffic Based on Large Language Model [J]. Computer Science, 2025, 52(6A): 241100058-7. |
[2] | GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8. |
[3] | TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9. |
[4] | RAN Qin, RUAN Xiaoli, XU Jing, LI Shaobo, HU Bingqi. Function Prediction of Therapeutic Peptides with Multi-coded Neural Networks Based on Projected Gradient Descent [J]. Computer Science, 2025, 52(6A): 240800024-6. |
[5] | FAN Xing, ZHOU Xiaohang, ZHANG Ning. Review on Methods and Applications of Short Text Similarity Measurement in Social Media Platforms [J]. Computer Science, 2025, 52(6A): 240400206-8. |
[6] | YANG Jixiang, JIANG Huiping, WANG Sen, MA Xuan. Research Progress and Challenges in Forest Fire Risk Prediction [J]. Computer Science, 2025, 52(6A): 240400177-8. |
[7] | WANG Jiamin, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, HAO Xu, ZHANG Chao, FU Rongsheng. Review of Concrete Defect Detection Methods Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240900137-12. |
[8] | HAO Xu, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, WANG Jiamin, CHU Hongkun. Survey of Man-Machine Distance Detection Method in Construction Site [J]. Computer Science, 2025, 52(6A): 240700098-10. |
[9] | CHEN Shijia, YE Jianyuan, GONG Xuan, ZENG Kang, NI Pengcheng. Aircraft Landing Gear Safety Pin Detection Algorithm Based on Improved YOlOv5s [J]. Computer Science, 2025, 52(6A): 240400189-7. |
[10] | GAO Junyi, ZHANG Wei, LI Zelin. YOLO-BFEPS:Efficient Attention-enhanced Cross-scale YOLOv10 Fire Detection Model [J]. Computer Science, 2025, 52(6A): 240800134-9. |
[11] | ZHANG Hang, WEI Shoulin, YIN Jibin. TalentDepth:A Monocular Depth Estimation Model for Complex Weather Scenarios Based onMultiscale Attention Mechanism [J]. Computer Science, 2025, 52(6A): 240900126-7. |
[12] | HUANG Hong, SU Han, MIN Peng. Small Target Detection Algorithm in UAV Images Integrating Multi-scale Features [J]. Computer Science, 2025, 52(6A): 240700097-5. |
[13] | WANG Baohui, GAO Zhan, XU Lin, TAN Yingjie. Research and Implementation of Mine Gas Concentration Prediction Algorithm Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240400188-7. |
[14] | LIU Chengming, LI Haixia, LI Shaochuan, LI Yinghao. Ensemble Learning Model for Stock Manipulation Detection Based on Multi-scale Data [J]. Computer Science, 2025, 52(6A): 240700108-8. |
[15] | WANG Chanfei, YANG Jing, XU Yamei, HE Jiai. OFDM Index Modulation Signal Detection Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240900122-6. |
|