Computer Science ›› 2025, Vol. 52 ›› Issue (3): 112-126.doi: 10.11896/jsjkx.240900095

• Database & Big Data & Data Science • Previous Articles     Next Articles

Survey on Deep Learning-based Meteorological Forecasting Models

WANG Yuan1, HUO Peng1, HAN Yi2, CHEN Tun2, WANG Xiang2, WEN Hui1   

  1. 1 College of Artificial Intelligence,Tianjin University of Science and Technology,Tianjin 300457,China
    2 College of Meteorology and Oceanography,National University of Defense Technology,Changsha 410073,China
  • Received:2024-09-14 Revised:2024-11-28 Online:2025-03-15 Published:2025-03-07
  • About author:WANG Yuan,born in 1989,Ph.D,associate professor.Her main research interests include intelligent science and natural language processing.
    HAN Yi,born in 1993,Ph.D,assistant researcher.His main research interests include intelligent forecasting of me-teorology and oceans,and knowledge graphs.
  • Supported by:
    National Natural Science Foundation of China(62372460),Natural Science Foundation of Hunan Province,China(2024JJ4042) and Youth Independent Innovation Science Fund of the National University of Defense Technology(ZK24-53).

Abstract: Accurate and timely weather forecasting is crucial for people’s livelihoods,environmental ecology,and military decision-making,attracting extensive attention and focused research from various sectors.Numerical weather prediction(NWP) is currently the mainstream forecasting method.Over long-term development,the accuracy and reliability of NWP have continuously improved.However,it still faces significant challenges,such as unavoidable systematic errors,ineffective utilization of historical observation data,and substantial computational costs.With the rapid rise of deep learning,data-driven artificial intelligence me-thods are gradually being applied to the field of weather forecasting,offering novel techniques to overcome these challenges.Against this backdrop,this paper comprehensively summarizes the current research status of NWP and deep learning-based weather forecasting.It systematically reviews the relevant concepts and input data for deep learning-based weather forecasting models,tho-roughly explains representative models applied to various weather forecasting tasks,and provides a detailed comparison of the technical architectures and performance metrics of different models.Additionally,it analyzes and discusses the existing challenges and the future directions in this field.The ultimate purpose of this survey is to provide reference information for related research.

Key words: Weather forecasting, Deep learning, Large model, Artificial intelligence for science

CLC Number: 

  • TP391
[1]MURPHY A H.What is a good forecast? an essay on the nature of goodness in weather forecasting[J].Weather and Forecasting,1993,8(2):281-293.
[2]ZHANG Q J,HONG G,WU D L,et al.Development Status,Problems and Prospects of Agrometeorological Observation Operation in China[J].Chinese Journal of Agrometeorology,2023,44(8):735-749.
[3]XIANG Y,CONG D M,ZHANG Y,et al.Two-Stream Neural Network Fusion Model for Highway Fog Detection[J].Journal of Southwest Jiaotong University,2019,54(1):173-179.
[4]QIU S M,WANG X K,DU X L.Evaluation of Military Communication Effectiveness in Meteorological Environment Based on Optimized BP Neural Network[J].Fire Control & Command Control,2022(3):89-96.
[5]KENDON E J,ROBERTS N M,FOWLER H J,et al.Heavier summer downpours with climate change revealed by weather forecast resolution model[J].Nature Climate Change,2014,4(7):570-576.
[6]LORENC A C.Analysis methods for numerical weather prediction[J].Quarterly Journal of the Royal Meteorological Society,1986,112(474):1177-1194.
[7]TAO S Y,ZHAO S X,ZHOU X P,et al.2003:The Research Progress of the Synoptic Meteorology and Synoptic Forecast[J].Chinese Journal of Atmospheric Sciences,2003,27(4):451-467.
[8]SHEN X S,SU Y,HU J L,et al.Development and operationtransformation of GRAPES global middle-range forecast system[J].Appl Meteor Sci,2017,28(1):1-10.
[9]BAUER P,THORPE A,BRUNET G.The quiet revolution ofnumerical weather prediction[J].Nature,2015,525(7567):47-55.
[10]RICHARDSON L F.Weather prediction by numerical process[M].Combridge:Combridge University Press,1922.
[11]MU M,CHEN B Y,ZHOU F F,et al.Methods and Uncertainties of Meteorological Forecast[J].Meteor Mon,2011,37(1):1-13.
[12]SHEN X S,WANG J J,LI Z C,et al.China’s independent and innovative development of numerical weather prediction[J].Acta Meteorologica Sinica,2020,78(3):451-476.
[13]BUIZZA R,MILLEER M,PALMER T N.Stochastic representation of model uncertainties in the ecmwf ensemble prediction system[J].Quarterly Journal of the Royal Meteorological Society,1999,125(560):2887-2908.
[14]GNEITING T,RAFTERY A E.Weather forecasting with en-semble methods[J].Science,2005,310(5746):248-249.
[15]SCHER S,MESSORI G.Predicting weather forecast uncertaintywith machine learning[J].Quarterly Journal of the Royal Me-teorological Society,2018,144(717):2830-2841.
[16]SONG J Q,WU X J,ZHANG L L,et al.A Study of the Two Helmholtz Solvers in the GRAPES Model Using GCR and GMRES[J].Computer Engineering & Science,2011,33(11):65-70.
[17]RÉMY S,KIPLING Z,FLEMMING J,et al.Description andevaluation of the tropospheric aerosol scheme in the european centre for medium-range weather forecasts(ecmwf) integrated forecasting system(ifs-aer,cycle 45r1)[J].Geoscientific Model Development,2019,12(11):4627-4659.
[18]YANG F,PAN H L,KRUEGER S K,et al.Evaluation of the ncep global forecast system at the arm sgp site[J].Monthly Weather Review,2006,134(12):3668-3690.
[19]SMITH D M,CUSACK S,COLMAN A W,et al.Improved surface temperature prediction for the coming decade from a global climate model[J].Science,2007,317(5839):796-799.
[20]GROVER A,KAPOOR A,HORVITZ E.A deep hybrid model for weather forecasting[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2015:379-386.
[21]LYNCH P.The origins of computer weather prediction and climate modeling[J].Journal of Computational Physics,2008,227(7):3431-3444.
[22]LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444.
[23]BERDEJO-ESPINOLA V,AMANO T.AI tools can improveequity inscience[J].Science,2023,379(6636):991-991.
[24]HUANG X M,LIN Y L,XIONG W,et al.Research on international developments of AI large meteorological models in nume-rical forecasting[J].Trans Atmos Sci,2024,47(1):46-54.
[25]ALABDULMOHSIN I M,NEYSHABUR B,ZHAI X.Revisiting neural scaling laws in language and vision[J].Advances in Neural Information Processing Systems,2022,35:22300-22312.
[26]SHI X,CHEN Z,WANG H,et al.Convolutional lstm network:A machine learning approach for precipitation nowcasting[C]//Proceedings of the 28th International Conference on NEURAL Information Processing Systems.2015:802-810.
[27]MARKOVICS D,MAYER M J.Comparison of machine learningmethods for photovoltaic power forecasting based on numerical weather prediction[J].Renewable and Sustainable Energy Reviews,2022,161:112364.
[28]REN X,LI X,REN K,et al.Deep learning-based weather prediction:A survey[J].Big Data Research,2021,23:100178.
[29]JASEENA K U,KOVOOR B C.Deterministic weather forecasting models based on intelligent predictors:A survey[J].Journal of King Saud University-computer and Information Sciences,2022,34(6):3393-3412.
[30]ABDALLA A M,GHAITH I H,TAMIMI A A.Deep learning weather forecasting techniques:literature survey[C]//2021 International Conference on Information Technology(ICIT).IEEE,2021:622-626.
[31]YANG X,DAI K,ZHU Y J.Progress and challenges of deeplearning techniques in intelligent grid weather forecasting[J].Acta Meteorologica Sinica,2022,80(5):649-667.
[32]LAZO J K,MORSS R E,DEMUTH J L.300 billion served:Sources,perceptions,uses,and values of weather forecasts[J].Bulletin of the American Meteorological Society,2009,90(6):785-798.
[33]SUN J,CAO Z,LI H,et al.Application of artificial intelligence technology to numerical weather prediction[J].Journal of Application Meteorological Science,2021,32(1):1-11.
[34]ESTÉVEZ J,GAVILÁN P,GIRÁLDEZ J V.Guidelines on validation procedures for meteorological data from automatic wea-ther stations[J].Journal of Hydrology,2011,402(1/2):144-154.
[35]CARRASSI A,BOCQUET M,BERTINO L,et al.Data assimilation in the geosciences:An overview of methods,issues,and perspectives[J].Wiley Interdisciplinary Reviews:Climate Change,2018,9(5):e535.
[36]WANG X,MA Y,WANG Y,et al.Traffic flow prediction via spatial temporal graph neural network[C]//Proceedings of the Web Conference 2020.2020:1082-1092.
[37]GAO F,YANG Y,WANG J,et al.A deep convolutional generative adversarial networks(DCGANs)-based semi-supervised method for object recognition in synthetic aperture radar(SAR) images[J].Remote Sensing,2018,10(6):846.
[38]WANG B,ZOU X,ZHU J.Data assimilation and its applications[J].Proceedings of the National Academy of Sciences,2000,97(21):11143-11144.
[39]KHODARAHMI M,MAIHAMI V.A review on kalman filter models[J].Archives of Computational Methods in Engineering,2023,30(1):727-747.
[40]COURTIER P,ANDERSSON E,HECKLEY W,et al.The ECMWF implementation of three-dimensional variational assimilation(3D-var).I:Formulation[J].Quarterly Journal of the Royal Meteorological Society,1998,124(550):1783-1807.
[41]AMARI S I.Backpropagation and stochastic gradient descentmethod[J].Neurocomputing,1993,5(4/5):185-196.
[42]FLETCHER R,REEVES C M.Function minimization by conju-gate gradients[J].The Computer Journal,1964,7(2):149-154.
[43]HERSBACH H,BELL B,BERRISFORD P,et al.The era5global reanalysis[J].Quarterly Journal of the Royal Meteorological Society,2020,146(730):1999-2049.
[44]RASP S,DUEBEN P D,SCHER S,et al.Weatherbench:abenchmark data set for data-driven weather forecasting[J].Journal of Advances in Modeling Earth Systems,2020,12(11):e2020MS002203.
[45]RASP S,HOYER S,MEROSE A,et al.Weatherbench 2:Abenchmark for the next generation of data-driven global wea-ther models[J].Journal of Advances in Modeling Earth Systems,2024,16(6):e2023MS004019.
[46]JUMPER J,EVANS R,PRITZEL A,et al.Highly accurate protein structure prediction with alphafold[J].Nature,2021,596(7873):583-589.
[47]SINGHAL K,AZIZI S,TU T,et al.Large language models encode clinical knowledge[J].Nature,2023,620(7972):172-180.
[48]ABRAMSON J,ADLER J,DUNGER J,et al.Accurate struc-ture prediction of biomolecular interactions with alphafold 3[J].Nature,2024,630:493-500.
[49]MERCHANT A,BATZNER S,SCHOENHOLZ S S,et al.Sca-ling deep learning for materials discovery[J].Nature,2023,624(7990):80-85.
[50]KHARE D,CHEN Z,GULOTTY R,et al.Probabilistic physics-integrated neural differentiable modeling for isothermal chemical vapor infiltration process[J].NPJ Computational Materials,2024,10(1):120.
[51]REICHSTEIN M,CAMPS-VALLS G,STEVENS B,et al.Deep learning and process understanding for data-driven earth system science[J].Nature,2019,566(7743):195-204.
[52]BENGIO Y.Learning deep architectures for AI[J].Foundations and Trends in Machine Learning,2009,2(1):1-127.
[53]LI M,ZHANG T,CHEN Y,et al.Efficient mini-batch training for stochastic optimization[C]//Proceedings of the 20th ACM SIGKDD International Conference on KNOWLEDGE Discovery and Data Mining.2014:661-670.
[54]LI Z,LIU F,YANG W,et al.A survey of convolutional neural networks:analysis,applications,and prospects[J].IEEE Transactions on Neural Networks and Learning Systems,2021,33(12):6999-7019.
[55]SCHUSTER M,PALIWAL K K.Bidirectional recurrent neural networks[J].IEEE Transactions on Signal Processing,1997,45(11):2673-2681.
[56]WU Z,PAN S,CHEN F,et al.A comprehensive survey ongraph neural networks[J].IEEE Transactions on Neural Networks and Learning Systems,2020,32(1):4-24.
[57]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[J].Advances in Neural Information Processing Systems,2017,11(4):6000-6010.
[58]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90.
[59]HAN K,WANG Y,CHEN H,et al.A survey on vision transformer[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(1):87-110.
[60]ZHU Y,TOTH Z,WOBUS R,et al.The economic value of ensemble-based weather forecasts[J].Bulletin of the American Me-teorological Society,2002,83(1):73-84.
[61]GLAHN H R,RUTH D P.The new digital forecast database of the national weather service[J].Bulletin of the American Me-teorological Society,2003,84(2):195-202.
[62]RODRIGUES E R,OLIVEIRA I,CUNHA R,et al.Deepdownscale:A deep learning strategy for high-resolution weather forecast[J].arXiv:1808.05264,2018.
[63]BAI C,SUN F,ZHANG J,et al.Rainformer:Features extraction balanced network for radar-based precipitation nowcasting[J].IEEE Geoscience and Remote Sensing Letters,2022,19:1-5.
[64]RAVURI S,LENC K,WILLSON M,et al.Skilful precipitation nowcasting using deep generative models of radar[J].Nature,2021,597(7878):672-677.
[65]ANDRYCHOWICZ M,ESPEHOLT L,LI D,et al.Deep lear-ning for day forecasts from sparse observations[J].arXiv:2306.06079,2023.
[66]GAO Z,SHI X,WANG H,et al.Earthformer:Exploring space-time transformers for earth system forecasting[J].Advances in Neural Information Processing Systems,2022,35:25390-25403.
[67]MOON S H,KIM Y H,LEE Y H,et al.Application of machine learning to an early warning system for very short-term heavy rainfall[J].Journal of Hydrology,2019,568:1042-1054.
[68]LEBEDEV V,IVASHKIN V,RUDENKO I,et al.Precipitation nowcasting with satellite imagery[C]//Proceedings of the 25th ACM SIGKDD International Conference on KnowledgeDisco-very & Data Mining.2019:2680-2688.
[69]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-assisted Intervention-MICCAI 2015:18th International Conference,Munich,Germany,October 5-9,2015,Proceedings,Part III 18.Springer,2015:234-241.
[70]SUN D,ROTH S,BLACK M J.A quantitative analysis of current practices in optical flow estimation and the principles behind them[J].International Journal of Computer Vision,2014,106:115-137.
[71]AGRAWAL S,BARRINGTON L,BROMBERG C,et al.Ma-chine learning for precipitation nowcasting from radar images[J].arXiv:1912.12132,2019.
[72]ZHANG J,HOWARD K,LANGSTON C,et al.Multi-radarmulti-sensor(mrms) quantitative precipitation estimation:Initial operating capabilities[J].Bulletin of the American Meteorological Society,2016,97(4):621-638.
[73]WU H,YAO Z,WANG J,et al.Motionrnn:A flexible model for video prediction with spacetime-varying motions[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:5435-15444.
[74]ZHOU C,SUN C,LIU Z,et al.A c-lstm neural network for text classification[J].arXiv:1511.08630,2015.
[75]WANG Y,WU H,ZHANG J,et al.Predrnn:A recurrent neural network for spatiotemporal predictive learning[J].IEEE Tran-sactions on Pattern Analysis and Machine Intelligence,2022,45(2):2208-2225.
[76]WU X H,HUA Y J,GUAN Y H,et al.Application of CNN-At-tention-BP to precipitation forecast[J].Journal of Nanjing University of Information Science & Technology,2022,14(2):148-155.
[77]PAN B,HSU K,AGHAKOUCHAK A,et al.Improving preci-pitation estimation using convolutional neural network[J].Water Resources Research,2019,55(3):2301-2321.
[78]WERBOS P J.Backpropagation through time:what it does and how to do it[J].Proceedings of the IEEE,1990,78(10):1550-1560.
[79]SHIN S I,NEWMAN M.Seasonal predictability of global and north american coastal sea surface temperature and height anomalies[J].Geophysical Research Letters,2021,48(10):e2020GL091886.
[80]SANDERY P A,SAKOV P.Ocean forecasting of mesoscale features can deteriorate by increasing model resolution towards the submesoscale[J].Nature Communications,2017,8(1):1566.
[81]ZHANG Q,WANG H,DONG J,et al.Prediction of sea surface temperature using long short-term memory[J].IEEE Geoscience and Remote Sensing Letters,2017,14(10):1745-1749.
[82]YANG Y,DONG J,SUN X,et al.A cfcc-lstm model for sea surface temperature prediction[J].IEEE Geoscience and Remote Sensing Letters,2017,15(2):207-211.
[83]LIN X G,WANG Z Y,LI J S,et al.Sea temperature forecasting based on LSTM neural network along the coast of eastern Guangdong[J].Marine Forecasts,2022,39(5):27-36.
[84]WENG S J,CAI J H,PANG Y X,et al.Application of convolutional neural network to sea surface temperature prediction in the coastal waters[J].Journal of Tropical Oceanography,2024,43(1):40-47.
[85]CHEN W B,CHEN H,HSIAO S C,et al.Wind forcing effect on hind-casting of typhoon-driven extreme waves[J].Ocean Engineering,2019,188:106260.
[86]GONG Y,DONG S,WANG Z.Forecasting of typhoon wavebased on hybrid machine learning models[J].Ocean Enginee-ring,2022,266:112934.
[87]CHEN S T.Probabilistic forecasting of coastal wave height du-ring typhoon warning period using machine learning methods[J].Journal of Hydroinformatics,2019,21(2):343-358.
[88]ZHOU S H,HONG X,LIANG C X,et al.A method of tropical cyclone wave height calculation based on artificial meural network[J].Journal of Tropical Oceanography,2020,39(4):25-33.
[89]SHANG F C,LI C Q,ZHAN K,et al.Application of Improved LSTM Neural Network in Time-Series Prediction of Extreme Short-Term Wave[J].Journal of Shanghai Jiao Tong University,2023,57(6):659-665.
[90]REICHENBACH P,ROSSI M,MALAMUD B D,et al.A review of statistically-based landslide susceptibility models[J].Earth-science Reviews,2018,180:60-91.
[91]TIAN N M,LAN H X,WU Y M,et al.Performance Comparison of BP Artificial Neural Network and CART Decision Tree Model in Landslide Susceptibility Prediction[J].Journal of Geo-information Science,2020,22(12):2304-2316.
[92]YANG J K,DANG J W,YANG J Y,et al.Displacement prediction of step-like landslide based on temporal analysis and CNN-BiLSTM-AM[J].Foreign Electronic Measurement Technology,2024,43(1):126-134.
[93]HAO Z,HAO F,SINGH V P.A general framework for multivariate multi-index drought prediction based on multivariate ensemble stream-flow prediction(mesp)[J].Journal of Hydrology,2016,539:1-10.
[94]HAO Z,AGHAKOUCHAK A.A nonparametric multivariatemulti-index drought monitoring framework[J].Journal of Hydrometeorology,2014,15(1):89-101.
[95]NGUYEN T,BRANDSTETTER J,KAPOOR A,et al.Climax:A foundation model for weather and climate[J].arXiv:2301.10343,2023.
[96]SCHULTZ M G,BETANCOURT C,GONG B,et al.Can deep learning beat numerical weather prediction?[J].Philosophical Transactions of the Royal Society A,2021,379(2194):20200097.
[97]KURTH T,SUBRAMANIAN S,HARRINGTON P,et al.Fourcastnet:Accelerating global high-resolution weather forecasting using adaptive fourier neural operators[C]//Procee-dings of the Platform for Advanced Scientific Computing Confe-rence.2023:1-11.
[98]GUIBAS J,MARDANI M,LI Z,et al.Adaptive fourier neural operators:Efficient token mixers for transformers[J].arXiv:2111.13587,2021.
[99]BI K,XIE L,ZHANG H,et al.Pangu-weather:A 3D high-resolution model for fast and accurate global weather forecast[J].arXiv:2211.02556,2022.
[100]BI K,XIE L,ZHANG H,et al.Accurate medium-range global weather forecasting with 3D neural networks[J].Nature,2023,619(7970):533-538.
[101]LIU Z,LIN Y,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:10012-10022.
[102]LAM R,SANCHEZ-GONZALEZ A,WILLSON M,et al.Graphcast:Learning skillful medium-range global weather forecasting[J].arXiv:2212.12794,2022.
[103]LAM R,SANCHEZ-GONZALEZ A,WILLSON M,et al.Learning skillful medium-range global weather forecasting[J].Science,2023,382(6677):1416-1421.
[104]CHEN K,HAN T,GONG J,et al.Fengwu:Pushing the skillful global medium-range weather forecast beyond 10 days lead[J].arXiv:2304.02948,2023.
[105]RADFORD A,KIM J W,HALLACY C,et al.Learning transferable visual models from natural language supervision[C]//International Conference on Machine Learning.PMLR,2021:8748-8763.
[106]CHERTI M,BEAUMONT R,WIGHTMAN R,et al.Reprodu-cible scaling laws for contrastive language-image learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:2818-2829.
[107]CHEN L,ZHONG X,ZHANG F,et al.Fuxi:A cascade machine learning forecasting system for 15-day global weather forecast[J].Npj Climate and Atmospheric Science,2023,6(1):190.
[108]LIU Z,HU H,LIN Y,et al.Swin transformer v2:Scaling up capacity and resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:12009-12019.
[109]MAGNUSSON L,BIDLOT J R,BONAVITA M,et al.Ecmwf activities for improved hurricane forecasts[J].Bulletin of the American Meteorological Society,2019,100(3):445-458.
[110]CHEN K,BAI L,LING F,et al.Towards an end-to-end artificial intelligence driven global weather forecasting system[J].arXiv:2312.12462,2023.
[111]YU J,LIN Z,YANG J,et al.Free-form image inpainting with gated convolution[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:4471-4480.
[112]XIAO Y,BAI L,XUE W,et al.Fengwu-4Dvar:Coupling the data-driven weather forecasting model with 4D variational assimilation[J].arXiv:2312.12455,2023.
[113]FABLET R,CHAPRON B,DRUMETZ L,et al.Learning variational data assimilation models and solvers[J].Journal of Advances in Modeling Earth Systems,2021,13(10):e2021MS002572.
[114]XU X,SUN X,HAN W,et al.Fuxi-da:A generalized deeplearning data assimilation framework for assimilating satellite observations[J].arXiv:2404.08522,2024.
[115]KASHINATH K,MUSTAFA M,ALBERT A,et al.Physics-informed machinelearning:case studies for weather and climate modelling[J].Philosophical Transactions of the Royal Society A,2021,379(2194):20200093.
[116]ARCOMANO T,SZUNYOGH I,WIKNER A,et al.A hybrid approach to atmospheric modeling that combines machine lear-ning with a physics-based numerical model[J].Journal of Advances in Modeling Earth Systems,2022,14(3):e2021MS002712.
[1] WANG Tao, BAI Xuefei, WANG Wenjian. Selective Feature Fusion for 3D CT Image Segmentation of Renal Cancer Based on Edge Enhancement [J]. Computer Science, 2025, 52(3): 41-49.
[2] WANG Jie, WANG Chuangye, XIE Jiucheng, GAO Hao. Animatable Head Avatar Reconstruction Algorithm Based on Region Encoding [J]. Computer Science, 2025, 52(3): 50-57.
[3] ZHONG Yue, GU Jieming. 3D Reconstruction of Single-view Sketches Based on Attention Mechanism and Contrastive Loss [J]. Computer Science, 2025, 52(3): 77-85.
[4] SHEN Yaxin, GAO Lijian , MAO Qirong. Semi-supervised Sound Event Detection Based on Meta Learning [J]. Computer Science, 2025, 52(3): 222-230.
[5] HAN Lin, WANG Yifan, LI Jianan, GAO Wei. Automatic Scheduling Search Optimization Method Based on TVM [J]. Computer Science, 2025, 52(3): 268-276.
[6] SUN Rui, WANG Fei, FENG Huidong, ZHANG Xudong, GAO Jun. Research Progress in Facial Presentation Attack Detection Methods Based on Deep Learning [J]. Computer Science, 2025, 52(2): 323-335.
[7] DING Ruiyang, SUN Lei, DAI Leyu, ZANG Weifei, XU Bayi. Generation Method for Adversarial Networks Traffic Based on Universal Perturbations [J]. Computer Science, 2025, 52(2): 336-343.
[8] CHEN Zigang, PAN Ding, LENG Tao, ZHU Haihua, CHEN Long, ZHOU Yousheng. Explanation Robustness Adversarial Training Method Based on Local Gradient Smoothing [J]. Computer Science, 2025, 52(2): 374-379.
[9] ZHANG Yusong, XU Shuai, YAN Xingyu, GUAN Donghai, XU Jianqiu. Survey on Cross-city Human Mobility Prediction [J]. Computer Science, 2025, 52(1): 102-119.
[10] LIU Yuming, DAI Yu, CHEN Gongping. Review of Federated Learning in Medical Image Processing [J]. Computer Science, 2025, 52(1): 183-193.
[11] LI Yujie, MA Zihang, WANG Yifu, WANG Xinghe, TAN Benying. Survey of Vision Transformers(ViT) [J]. Computer Science, 2025, 52(1): 194-209.
[12] ZHU Xiaoyan, WANG Wenge, WANG Jiayin, ZHANG Xuanping. Just-In-Time Software Defect Prediction Approach Based on Fine-grained Code Representationand Feature Fusion [J]. Computer Science, 2025, 52(1): 242-249.
[13] ZHANG Jian, LI Hui, ZHANG Shengming, WU Jie, PENG Ying. Review of Pre-training Methods for Visually-rich Document Understanding [J]. Computer Science, 2025, 52(1): 259-276.
[14] LI Yahe, XIE Zhipeng. Active Learning Based on Maximum Influence Set [J]. Computer Science, 2025, 52(1): 289-297.
[15] ZHANG Xin, ZHANG Han, NIU Manyu, JI Lixia. Adversarial Sample Detection in Computer Vision:A Survey [J]. Computer Science, 2025, 52(1): 345-361.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!