Computer Science ›› 2025, Vol. 52 ›› Issue (3): 161-168.doi: 10.11896/jsjkx.240500015
• Database & Big Data & Data Science • Previous Articles Next Articles
LU Haiyang1, LIU Xianhui2, HOU Wenlong1
CLC Number:
[1]GOLDBERG D,NICHOLS D,OKI B M,et al.Using collaborative filtering to weave an information tapestry[J].Communications of the ACM,1992,35(12):61-70. [2]KABBUR S,NING X,KARYPIS G.Fism:factored item simila-rity models for top-n recommender systems[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2013:659-667. [3]KOREN Y.Factorization meets the neighborhood:a multiface-ted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.2008:426-434. [4]HE X,DENG K,WANG X,et al.Lightgcn:Simplifying andpowering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:639-648. [5]WANG X,HE X,WANG M,et al.Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:165-174. [6]WANG X,HE X,CAO Y,et al.Kgat:Knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Disco-very & Data Mining.2019:950-958. [7]GUO X W,XIA H B,LIU Y.Hybrid Recommendation Model of Knowledge Graph and Graph Convolutional Network[J].Journal of Frontiers of Computer Science and Technology,2022,16(6):1343-1353. [8]LAI R,CHEN L,ZHAO Y,et al.Disentangled negative sampling for collaborative filtering[C]//Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining.2023:96-104. [9]RENDLE S,FREUDENTHALER C,GANTNER Z,et al.BPR:Bayesian personalized ranking from implicit feedback[J].arXiv:1205.2618,2012. [10]LIU B,WANG B.Bayesian Negative Sampling for Recommendation[C]//2023 IEEE 39th International Conference on Data Engineering.2023:749-761. [11]ZHANG H,CISSE M,DAUPHIN Y N,et al.mixup:Beyondempirical risk minimization[J].arXiv:1710.09412,2017. [12]SUN Z,GUO Q,YANG J,et al.Research commentary on recommendations with side information:A survey and research directions[J].Electronic Commerce Research and Applications,2019,37:100879. [13]SARWAR B,KARYPIS G,KONSTAN J,et al.Item-based collaborative filtering recommendation algorithms[C]//Procee-dings of the 10th International Conference on World Wide Web.2001:285-295. [14]YOO H,CHUNG K.Deep learning-based evolutionary recommendation model for heterogeneous big data integration[J].Transactions on Internet and Information Systems,2020,14(9):3730-3744. [15]RAO Z Y,ZHANG Y,LIU J T,et al.Recommendation methods and systems using knowledge graph[J].Acta Automatica Sinica,2021,47(9):2061-2077. [16]SHI C,ZHANG Z,LUO P,et al.Semantic path based persona-lized recommendation on weighted heterogeneous information networks[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.2015:453-462. [17]WANG H,ZHANG F,WANG J,et al.Ripplenet:Propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Confe-rence on Information and Knowledge Management.2018:417-426. [18]MA H D,FANG Y Q.Dynamic Negative Sampling for Graph Convolution Network Based Collaborative Filtering Recommendation Model[J].Computer Science,2023,50(S2):489-495. [19]DIAZ-AVILES E,DRUMOND L,SCHMIDT-THIEME L,et al.Real-time top-n recommendation in social streams[C]//Proceedings of the Sixth ACM Conference on Recommender Systems.2012:59-66. [20]CUI P,LIU S,ZHU W.General knowledge embedded imagerepresentation learning[J].IEEE Transactions on Multimedia,2017,20(1):198-207. [21]HE X,ZHANG H,KAN M Y,et al.Fast matrix factorization for online recommendation with implicit feedback[C]//Procee-dings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval.2016:549-558. [22]TOGASHI R,OTANI M,SATOH S.Alleviating cold-startproblems in recommendation through pseudo-labelling over knowledge graph[C]// Proceedings of the 14th ACM International Conference on Web Search and Data Mining.2021:931-939. [23]RENDLE S,FREUDENTHALER C.Improving pairwise lear-ning for item recommendation from implicit feedback[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining.2014:273-282. [24]ZHANG W,CHEN T,WANG J,et al.Optimizing top-n collabo-rative filtering via dynamic negative item sampling[C]//Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval.2013:785-788. [25]ZHAO T,MCAULEY J,KING I.Improving latent factor mo-dels via personalized feature projection for one class recommendation[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.2015:821-830. [26]YU L,ZHOU G,ZHANG C,et al.RankMBPR:Rank-awaremutual bayesian personalized ranking for item recommendation[C]//Web-Age Information Management:17th International Conference.2016:244-256. [27]ZHAO Y,GUO G B,JIANG L Y.Adversarial Sampling for Social Recommender[J].Journal of Cyber Security,2021,6(5):88-98. [28]DING J,QUAN Y,YAO Q,et al.Simplify and robustify negative sampling for implicit collaborative filtering[J].Advances in Neural Information Processing Systems,2020,33:1094-1105. [29]HUANG T,DONG Y,DING M,et al.Mixgcf:An improvedtraining method for graph neural network-based recommender systems[C]// Proceedings of the 27th ACM SIGKDD Confe-rence on Knowledge Discovery & Data Mining.2021:665-674. [30]WANG J,YU L,ZHANG W,et al.Irgan:A minimax game for unifying generative and discriminative information retrieval models[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.2017:515-524. [31]PARK D H,CHANG Y.Adversarial sampling and training for semi-supervised information retrieval[C]//The World Wide Web Conference.2019:1443-1453. [32]ZHAO Y H,LIU L,WANG H L,et al.Survey of Knowledge Graph Recommendation System Research[J].Journal of Frontiers of Computer Science and Technology,2023,17(4):771-791. [33]ANAGNOSTOPOULOS A,KUMAR R,MAHDIAN M.Influence and correlation in social networks[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2008:7-15. [34]KALANTIDIS Y,SARIYILDIZ M B,PION N,et al.Hard negative mixing for contrastive learning[J].Advances in Neural Information Processing Systems,2020,33:21798-21809. [35]KOREN Y,BELL R,VOLINSKY C.Matrix factorization techniques for recommender systems[J].Computer,2009,42(8):30-37. |
[1] | SONG Baoyan, LIU Hangsheng, SHAN Xiaohuan, LI Su, CHEN Ze. Joint Relational Patterns and Analogy Transfer Knowledge Graph Completion Method [J]. Computer Science, 2025, 52(3): 287-294. |
[2] | WEI Qianqiang, ZHAO Shuliang, ZHANG Siman. Multi-hop Knowledge Base Question Answering Based on Differentiable Knowledge Graph [J]. Computer Science, 2025, 52(3): 295-305. |
[3] | ZENG Zefan, HU Xingchen, CHENG Qing, SI Yuehang, LIU Zhong. Survey of Research on Knowledge Graph Based on Pre-trained Language Models [J]. Computer Science, 2025, 52(1): 1-33. |
[4] | CHENG Zhiyu, CHEN Xinglin, WANG Jing, ZHOU Zhongyuan, ZHANG Zhizheng. Retrieval-augmented Generative Intelligence Question Answering Technology Based on Knowledge Graph [J]. Computer Science, 2025, 52(1): 87-93. |
[5] | LIU Changcheng, SANG Lei, LI Wei, ZHANG Yiwen. Large Language Model Driven Multi-relational Knowledge Graph Completion Method [J]. Computer Science, 2025, 52(1): 94-101. |
[6] | CHENG Jinfeng, JIANG Zongli. Dialogue Generation Model Integrating Emotional and Commonsense Knowledge [J]. Computer Science, 2025, 52(1): 307-314. |
[7] | NIU Guanglin, LIN Zhen. Survey of Knowledge Graph Representation Learning for Relation Feature Modeling [J]. Computer Science, 2024, 51(9): 182-195. |
[8] | CHEN Shanshan, YAO Subin. Study on Recommendation Algorithms Based on Knowledge Graph and Neighbor PerceptionAttention Mechanism [J]. Computer Science, 2024, 51(8): 313-323. |
[9] | YANG Zhenzhen, WANG Dongtao, YANG Yongpeng, HUA Renyu. Multi-embedding Fusion Based on top-N Recommendation [J]. Computer Science, 2024, 51(7): 140-145. |
[10] | ZHANG Hui, ZHANG Xiaoxiong, DING Kun, LIU Shanshan. Device Fault Inference and Prediction Method Based on Dynamic Graph Representation [J]. Computer Science, 2024, 51(7): 310-318. |
[11] | HE Jing, ZHAO Rui, ZHANG Hengshuo. Visual Bibliometric Analysis of Knowledge Graph [J]. Computer Science, 2024, 51(6A): 230500123-10. |
[12] | TANG Xin, SUN Yufei, WANG Yujue, SHI Min, ZHU Dengming. Three Layer Knowledge Graph Architecture for Industrial Digital Twins [J]. Computer Science, 2024, 51(6A): 230400153-6. |
[13] | ZHU Yuliang, LIU Juntao, RAO Ziyun, ZHANG Yi, CAO Wanhua. Knowledge Reasoning Model Combining HousE with Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600209-8. |
[14] | YIN Baosheng, KONG Weiyi. Electra Based Chinese Event Detection Model with Dependency Syntax Tree [J]. Computer Science, 2024, 51(6A): 230600158-6. |
[15] | PENG Bo, LI Yaodong, GONG Xianfu, LI Hao. Method for Entity Relation Extraction Based on Heterogeneous Graph Neural Networks and TextSemantic Enhancement [J]. Computer Science, 2024, 51(6A): 230700071-5. |
|