Computer Science ›› 2024, Vol. 51 ›› Issue (7): 140-145.doi: 10.11896/jsjkx.230400066
• Database & Big Data & Data Science • Previous Articles Next Articles
YANG Zhenzhen1, WANG Dongtao1, YANG Yongpeng1,2, HUA Renyu1
CLC Number:
[1]WU J,XIE H,JIANG W H.Survey of graph neural network in recommendation system[J].Journal of Frontiers of Computer Science and Technology,2022,16(10):2249-2263. [2]AIAEGHU C.An optimized item-based collaborative filteringalgorithm[J].Journal of Ambient Intelligence and Humanized Computing,2021,12(12):10629-10636. [3]RENDLE S,FREUDENTHALER C,GANTNER Z,et al.BPR:Bayesian personalized ranking from implicit feedback[C]//Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence.2009:452-461. [4]KOREN Y,BELL R,VOLINSKY C.Matrix factorization techniques for recommender systems [J].Computer,2009,42(8):30-37. [5]HE X,LIAO L,ZHANG H,et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web.2017:173-182. [6]SHUAI J,ZHANG K,WU L,et al.A review-aware graph con-trastive learning framework for recommendation[C]//Procee-dings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.2022:1283-1293. [7]ZHENG C,FU X,DONG L.Recommendation model based onmulti-aspect latent feature and neural network[J].Journal of Chinese Computer Systems.2022,43(1):35-41. [8]ZHAO B W,HU L,YOU Z H,et al.Hingrl:predicting drug-disease associations with graph representation learning on hete-rogeneous information networks[J].Briefings in Bioinformatics,2022,23(1):1-15. [9]WANG X,BO D,SHI C,et al.A survey on heterogeneous graph embedding:methods,techniques,applications and sources[J].arXiv:2011.14867,2022. [10]WANG X,JI H,SHI C,et al.Heterogeneous graph attention network[C]//The World Wide Web Conference.2019:2022-2032. [11]SHI C,HU B,ZHAO W X,et al.Heterogeneous information network embedding for recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2018,31(2):357-370. [12]HU B,SHI C,ZHAO W X,et al.Leveraging meta-path basedcontext for top-n recommendation with a neural co-attention model[C]//Proceedings of the 24th ACM SIGKDD Interna-tional Conference on Knowledge Discovery & Data Mining.2018:1531-1540. [13]JIN J,QIN J,FANG Y,et al.An efficient neighborhood-based interaction model for recommendation on heterogeneous graph[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:75-84. [14]CHENG H T,KOC L,HARMSEN J,et al.Wide & deep lear-ning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.2016:7-10. [15]ZHANG W,DU T,WANG J.Deep learning over multi-field ca-tegorical data[C]//European Conference on Information Retrie-val.2016:45-57. [16]NGUYEN Q C,PHAM M T,PHAN DD,et al.Efficient Multi-Organ Segmentation Using HRNet And OCRNet[C]//2022 RIVF International Conference on Computing and Communication Technologies.2022:542-547. [17]ZHUANG C,LU Z,WANG Y,et al.ACDNet:Adaptively combined dilated convolution for monocular panorama depth estimation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022,36(3):3653-3661. [18]ZHOU W,LIU C,LEI J,et al.HFNet:Hierarchical feedback network with multilevel atrous spatial pyramid pooling for RGB-D saliency detection [J].Neurocomputing,2022,490:347-357. [19]HUANG T,ZHANG Z,ZHANG J.FiBiNET:combining featureimportance and bilinear feature interaction for click-through rate prediction[C]//Proceedings of the 13th ACM Conference on Recommender Systems.2019:169-177. [20]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [21]DONG Y,CHAWLA N V,SWAMI A.Metapath2vec:Scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017:135-144. |
[1] | FAN Yi, HU Tao, YI Peng. Host Anomaly Detection Framework Based on Multifaceted Information Fusion of SemanticFeatures for System Calls [J]. Computer Science, 2024, 51(7): 380-388. |
[2] | BAI Wenchao, BAI Shuwen, HAN Xixian, ZHAO Yubo. Efficient Query Workload Prediction Algorithm Based on TCN-A [J]. Computer Science, 2024, 51(7): 71-79. |
[3] | ZENG Zihui, LI Chaoyang, LIAO Qing. Multivariate Time Series Anomaly Detection Algorithm in Missing Value Scenario [J]. Computer Science, 2024, 51(7): 108-115. |
[4] | HU Haibo, YANG Dan, NIE Tiezheng, KOU Yue. Graph Contrastive Learning Incorporating Multi-influence and Preference for Social Recommendation [J]. Computer Science, 2024, 51(7): 146-155. |
[5] | LI Jiaying, LIANG Yudong, LI Shaoji, ZHANG Kunpeng, ZHANG Chao. Study on Algorithm of Depth Image Super-resolution Guided by High-frequency Information ofColor Images [J]. Computer Science, 2024, 51(7): 197-205. |
[6] | LOU Zhengzheng, ZHANG Xin, HU Shizhe, WU Yunpeng. Foggy Weather Object Detection Method Based on YOLOX_s [J]. Computer Science, 2024, 51(7): 206-213. |
[7] | YAN Jingtao, LI Yang, WANG Suge, PAN Bangze. Overlap Event Extraction Method with Language Granularity Fusion Based on Joint Learning [J]. Computer Science, 2024, 51(7): 287-295. |
[8] | WEI Ziang, PENG Jian, HUANG Feihu, JU Shenggen. Text Classification Method Based on Multi Graph Convolution and Hierarchical Pooling [J]. Computer Science, 2024, 51(7): 303-309. |
[9] | WANG Xianwei, FENG Xiang, YU Huiqun. Multi-agent Cooperative Algorithm for Obstacle Clearance Based on Deep Deterministic PolicyGradient and Attention Critic [J]. Computer Science, 2024, 51(7): 319-326. |
[10] | ZHANG Le, YU Ying, GE Hao. Mural Inpainting Based on Fast Fourier Convolution and Feature Pruning Coordinate Attention [J]. Computer Science, 2024, 51(6A): 230400083-9. |
[11] | SUN Yang, DING Jianwei, ZHANG Qi, WEI Huiwen, TIAN Bowen. Study on Super-resolution Image Reconstruction Using Residual Feature Aggregation NetworkBased on Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600039-6. |
[12] | QUE Yue, GAN Menghan, LIU Zhiwei. Object Detection with Receptive Field Expansion and Multi-branch Aggregation [J]. Computer Science, 2024, 51(6A): 230600151-6. |
[13] | HE Xinyu, LU Chenxin, FENG Shuyi, OUYANG Shangrong, MU Wentao. Ship Detection and Recognition of Optical Remote Sensing Images for Embedded Platform [J]. Computer Science, 2024, 51(6A): 230700117-7. |
[14] | ZHU Yuliang, LIU Juntao, RAO Ziyun, ZHANG Yi, CAO Wanhua. Knowledge Reasoning Model Combining HousE with Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600209-8. |
[15] | BAI Yu, WANG Xinzhe. Study on Hypernymy Recognition Based on Combined Training of Attention Mechanism and Prompt Learning [J]. Computer Science, 2024, 51(6A): 230700226-5. |
|