Computer Science ›› 2025, Vol. 52 ›› Issue (3): 231-238.doi: 10.11896/jsjkx.231200111
• Computer Graphics & Multimedia • Previous Articles Next Articles
CHEN Guangyuan, WANG Zhaohui, CHENG Ze
CLC Number:
[1]WANG X,WANG C,LIU B,et al.Multi-view stereo in the deeplearning era:A comprehensive review[J].Displays,2021,70:102102. [2]FURUKAWA Y,HERNANDEZ C.Multi-view stereo:A tuto-rial[J].Foundations and Trends© in Computer Graphics and Vision,2015,9(1/2):1-148. [3]GU J,WANG Z,KUEN J,et al.Recent advances in convolu-tional neural networks[J].Pattern Recognition,2018,77:354-377. [4]YAO Y,LUO Z,LI S,et al.Mvsnet:Depth inference for unstructured multi-view stereo[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:767-783. [5]GU X,FAN Z,ZHU S,et al.Cascade cost volume for high-resolution multi-view stereo and stereo matching[C]//Proceedings of the IEEE/ CVF Conference on Computer Vision and Pattern Recognition.2020:2495-2504. [6]YANG J,MAO W,ALVAREZ J M,et al.Cost volume pyramid based depth inference for multi-viewstereo[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:4877-4886. [7]CHENG S,XU Z,ZHU S,et al.Deep stereo using adaptive thin volume representation with uncertainty awareness[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:2524-2534. [8]LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature p yramidnetworks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2117-2125. [9]HARIS M,SHAKHNAROVICH G,UKITA N.Deep back-pro-jection networks for super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:16641673. [10]SINHA S N,MORDOHAI P,POLLEFEYS M.Multi-view stereo via graph cuts on the dual of an adaptive tetrahedral mesh[C]//2007 IEEE 11th International Conference on Computer Vision.IEEE,2007:1-8. [11]FURUKAWA Y,PONCE J.Carved visual hulls for image-based modeling[C]//Computer Vision-ECCV 2006:9th European Conference on Computer Vision,Graz,Austria,May 7-13,2006.Proceedings,Part I 9.Springer Berlin Heidelberg,2006:564-577. [12]SCHONBERGER J L,FRAHM J M.Structure-from-motion revisited[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:4104-4113. [13]GALLIANI S,LASINGER K,SCHINDLER K.Massively pa-rallel multiview stereopsis by surface normal diffusion[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:873-881. [14]CAMPBELL N D F,VOGIATZIS G,HERNANDEZ C,et al.Using multiple hypotheses to improve depth- maps for multi-view stereo[C]//Computer Vision ECCV 2008:10th European Conference on Computer Vision,Marseille,France,October 12-18,2008,Proceedings,Part I 10.Springer Berlin Heidelberg,2008:766-779. [15]TOLA E,STRECHA C,FUA P.Efficient large-scalemulti-view stereo for ultra high-resolution image sets[J].Machine Vision and Applications,2012,23:903-920. [16]KANG S B,SZELISKI R,CHAI J.Handling occlusions in dense multi-view stereo[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.CVPR 2001.IEEE,2001. [17]JI M,GALL J,ZHENG H,et al.Surfacenet:An end-to-end 3d neural network for multiview stereopsis[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2307-2315. [18]YAO Y,LUO Z,LI S,et al.Recurrent mvsnet for high-resolution multi-view stereo depth inference[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and PaRtern recognition.2019:5525-5534. [19]YU Z,GAO S.Fast-mvsnet:Sparse-to-dense multi-view stereo with learned propagation and gauss-newton refinement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:1949-1958. [20]WANG F,GALLIANI S,VOGEL C,et al.Patchmatchnet:Learned multi-view patchmatch stereo[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:14194-14203. [21]PENG R,WANG R,WANG Z,et al.Rethinking depth estimation for multi-view stereo:A unified representation[C]//Proceedings of the IEEE/ CVF Conference on Computer Vision and Pattern Recognition.2022:8645-8654. [22]MI Z,DI C,XU D.Generalized binary search network for highly-efficient multi-view stereo[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:12991-13000. [23]CAO C,REN X,FU Y.Mvsformer:Learning robust image re-presentations via transformers and temperature-based depth for multi-view stereo[J].arXiv:2208.02541,2022. [24]Ding Y,YUAN W,Zhu Q,et al.Transmvsnet:Globalcontext-aware multi-view stereo network withtransformers[C]//Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition.2022:8585-8594. [25]MA X,GONG Y,WANG Q,et al.Epp-mvsnet:Epipolar assembling based depth prediction for multi-view stereo[C]//Procee-dings of the IEEE/CVF International Conference on Computer Vision.2021:5732-5740. [26]LUO A,YANG F,LI X,et al.Learning optical flow with kernel patch attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:8906-8915. [27]YANG L,ZHANG R Y,LI L,et al.Simam:A simple,parameter-free attention module for convolutional neural networks[C]//International Conference on Machine Learning.PMLR,2021:11863-11874. [28]AANæS H,JENSEN R R,VOGIATZIS G,et al.Large-scale data for multiple-view stereopsis[J].International Journal of Computer Vision,2016,120:153-168. [29]KNAPITSCH A,PARK J,ZHOU Q Y,et al.Tanks and tem-ples:Benchmarking large-scale scene reconstruction[J].ACM Transactions on Graphics(ToG),2017,36(4):1-13. [30]CAMPBELL N D F,VOGIATZIS G,HERNANDEZ C,et al.Using multiple hypotheses to improve depth-maps for multi-view stereo[C]//Computer Vision ECCV 2008:10th European Conference on Computer Vision,Marseille,France,October 1218,2008,Proceedings,Part I 10.Springer Berlin Heidelberg,2008:766-779. [31]GALLIANI S,LASINGER K,SCHINDLER K.Gipuma:Mas-sively parallel multi-view stereo reconstruction[J/OL].https://www.dgpf.de/src/tagung/jt2016/proceedings/papers/34_DLT2016_Galliani_et_al.pdf. [32]SCHONBERGER J L,FRAHM J M.Structure-from-motion revisited[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:4104-4113. [33]CHEN R,HAN S,XU J,et al.Point-based multi-view stereonetwork[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:1538-1547. [34]WEI Z,ZHU Q,MIN C,et al.Aa-rmvsnet:Adaptive aggregation recurrent multi-view stereo network[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:6187-6196. [35]YI P,TANG S,YAO J.DDR-Net:Learning multi-stage multi-view stereo with dynamic depth range[J].arXiv:2103.14275,2021. |
[1] | WANG Tao, BAI Xuefei, WANG Wenjian. Selective Feature Fusion for 3D CT Image Segmentation of Renal Cancer Based on Edge Enhancement [J]. Computer Science, 2025, 52(3): 41-49. |
[2] | WANG Mengwei, YANG Zhe. Speaker Verification Method Based on Sub-band Front-end Model and Inverse Feature Fusion [J]. Computer Science, 2025, 52(3): 214-221. |
[3] | ZHU Xiaoyan, WANG Wenge, WANG Jiayin, ZHANG Xuanping. Just-In-Time Software Defect Prediction Approach Based on Fine-grained Code Representationand Feature Fusion [J]. Computer Science, 2025, 52(1): 242-249. |
[4] | LI Xin, PU Yuanyuan, ZHAO Zhengpeng, LI Yupan, XU Dan. Image Arbitrary Style Transfer via Artistic Aesthetic Enhancement [J]. Computer Science, 2024, 51(9): 129-139. |
[5] | LIU Qian, BAI Zhihao, CHENG Chunling, GUI Yaocheng. Image-Text Sentiment Classification Model Based on Multi-scale Cross-modal Feature Fusion [J]. Computer Science, 2024, 51(9): 258-264. |
[6] | LIU Sichun, WANG Xiaoping, PEI Xilong, LUO Hangyu. Scene Segmentation Model Based on Dual Learning [J]. Computer Science, 2024, 51(8): 133-142. |
[7] | WANG Chao, TANG Chao, WANG Wenjian, ZHANG Jing. Infrared Human Action Recognition Method Based on Multimodal Attention Network [J]. Computer Science, 2024, 51(8): 232-241. |
[8] | CAI Wenliang, HUANG Jun. Lane Detection Method Based on RepVGG [J]. Computer Science, 2024, 51(7): 236-243. |
[9] | QUE Yue, GAN Menghan, LIU Zhiwei. Object Detection with Receptive Field Expansion and Multi-branch Aggregation [J]. Computer Science, 2024, 51(6A): 230600151-6. |
[10] | LIU Heng, LIN Hongyu, WU Tao. Detection Method for Workers’ Illegal Operation Behavior in PackagingWorkshop of CigaretteFactory [J]. Computer Science, 2024, 51(6A): 230700123-8. |
[11] | WANG Yanlin, SUN Jing, YANG Hongbo, GUO Tao, PAN Jiahua, WANG Weilian. Classification Model of Heart Sounds in Pulmonary Hypertension Based on Time-Frequency Fusion Features [J]. Computer Science, 2024, 51(6A): 230800091-7. |
[12] | KANG Zhiyong, LI Bicheng, LIN Huang. User Interest Recognition Method Incorporating Category Labels and Topic Information [J]. Computer Science, 2024, 51(6A): 230500169-8. |
[13] | HAN Zhigeng, ZHOU Ting, CHEN Geng, FU Chunshuo, CHEN Jian. RM-RT2NI:A Recommendation Model with Review Timeliness and Trusted Neighbor Influence [J]. Computer Science, 2024, 51(6A): 230800160-7. |
[14] | LI Guo, CHEN Chen, YANG Jing, QUN Nuo. Study on Tibetan Short Text Classification Based on DAN and FastText [J]. Computer Science, 2024, 51(6A): 230700064-5. |
[15] | LI Yuehao, WANG Dengjiang, JIAN Haifang, WANG Hongchang, CHENG Qinghua. LiDAR-Radar Fusion Object Detection Algorithm Based on BEV Occupancy Prediction [J]. Computer Science, 2024, 51(6): 215-222. |
|