Computer Science ›› 2025, Vol. 52 ›› Issue (3): 231-238.doi: 10.11896/jsjkx.231200111
• Computer Graphics & Multimedia • Previous Articles Next Articles
CHEN Guangyuan, WANG Zhaohui, CHENG Ze
CLC Number:
| [1]WANG X,WANG C,LIU B,et al.Multi-view stereo in the deeplearning era:A comprehensive review[J].Displays,2021,70:102102. [2]FURUKAWA Y,HERNANDEZ C.Multi-view stereo:A tuto-rial[J].Foundations and Trends© in Computer Graphics and Vision,2015,9(1/2):1-148. [3]GU J,WANG Z,KUEN J,et al.Recent advances in convolu-tional neural networks[J].Pattern Recognition,2018,77:354-377. [4]YAO Y,LUO Z,LI S,et al.Mvsnet:Depth inference for unstructured multi-view stereo[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:767-783. [5]GU X,FAN Z,ZHU S,et al.Cascade cost volume for high-resolution multi-view stereo and stereo matching[C]//Proceedings of the IEEE/ CVF Conference on Computer Vision and Pattern Recognition.2020:2495-2504. [6]YANG J,MAO W,ALVAREZ J M,et al.Cost volume pyramid based depth inference for multi-viewstereo[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:4877-4886. [7]CHENG S,XU Z,ZHU S,et al.Deep stereo using adaptive thin volume representation with uncertainty awareness[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:2524-2534. [8]LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature p yramidnetworks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2117-2125. [9]HARIS M,SHAKHNAROVICH G,UKITA N.Deep back-pro-jection networks for super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:16641673. [10]SINHA S N,MORDOHAI P,POLLEFEYS M.Multi-view stereo via graph cuts on the dual of an adaptive tetrahedral mesh[C]//2007 IEEE 11th International Conference on Computer Vision.IEEE,2007:1-8. [11]FURUKAWA Y,PONCE J.Carved visual hulls for image-based modeling[C]//Computer Vision-ECCV 2006:9th European Conference on Computer Vision,Graz,Austria,May 7-13,2006.Proceedings,Part I 9.Springer Berlin Heidelberg,2006:564-577. [12]SCHONBERGER J L,FRAHM J M.Structure-from-motion revisited[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:4104-4113. [13]GALLIANI S,LASINGER K,SCHINDLER K.Massively pa-rallel multiview stereopsis by surface normal diffusion[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:873-881. [14]CAMPBELL N D F,VOGIATZIS G,HERNANDEZ C,et al.Using multiple hypotheses to improve depth- maps for multi-view stereo[C]//Computer Vision ECCV 2008:10th European Conference on Computer Vision,Marseille,France,October 12-18,2008,Proceedings,Part I 10.Springer Berlin Heidelberg,2008:766-779. [15]TOLA E,STRECHA C,FUA P.Efficient large-scalemulti-view stereo for ultra high-resolution image sets[J].Machine Vision and Applications,2012,23:903-920. [16]KANG S B,SZELISKI R,CHAI J.Handling occlusions in dense multi-view stereo[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.CVPR 2001.IEEE,2001. [17]JI M,GALL J,ZHENG H,et al.Surfacenet:An end-to-end 3d neural network for multiview stereopsis[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2307-2315. [18]YAO Y,LUO Z,LI S,et al.Recurrent mvsnet for high-resolution multi-view stereo depth inference[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and PaRtern recognition.2019:5525-5534. [19]YU Z,GAO S.Fast-mvsnet:Sparse-to-dense multi-view stereo with learned propagation and gauss-newton refinement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:1949-1958. [20]WANG F,GALLIANI S,VOGEL C,et al.Patchmatchnet:Learned multi-view patchmatch stereo[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:14194-14203. [21]PENG R,WANG R,WANG Z,et al.Rethinking depth estimation for multi-view stereo:A unified representation[C]//Proceedings of the IEEE/ CVF Conference on Computer Vision and Pattern Recognition.2022:8645-8654. [22]MI Z,DI C,XU D.Generalized binary search network for highly-efficient multi-view stereo[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:12991-13000. [23]CAO C,REN X,FU Y.Mvsformer:Learning robust image re-presentations via transformers and temperature-based depth for multi-view stereo[J].arXiv:2208.02541,2022. [24]Ding Y,YUAN W,Zhu Q,et al.Transmvsnet:Globalcontext-aware multi-view stereo network withtransformers[C]//Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition.2022:8585-8594. [25]MA X,GONG Y,WANG Q,et al.Epp-mvsnet:Epipolar assembling based depth prediction for multi-view stereo[C]//Procee-dings of the IEEE/CVF International Conference on Computer Vision.2021:5732-5740. [26]LUO A,YANG F,LI X,et al.Learning optical flow with kernel patch attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:8906-8915. [27]YANG L,ZHANG R Y,LI L,et al.Simam:A simple,parameter-free attention module for convolutional neural networks[C]//International Conference on Machine Learning.PMLR,2021:11863-11874. [28]AANæS H,JENSEN R R,VOGIATZIS G,et al.Large-scale data for multiple-view stereopsis[J].International Journal of Computer Vision,2016,120:153-168. [29]KNAPITSCH A,PARK J,ZHOU Q Y,et al.Tanks and tem-ples:Benchmarking large-scale scene reconstruction[J].ACM Transactions on Graphics(ToG),2017,36(4):1-13. [30]CAMPBELL N D F,VOGIATZIS G,HERNANDEZ C,et al.Using multiple hypotheses to improve depth-maps for multi-view stereo[C]//Computer Vision ECCV 2008:10th European Conference on Computer Vision,Marseille,France,October 1218,2008,Proceedings,Part I 10.Springer Berlin Heidelberg,2008:766-779. [31]GALLIANI S,LASINGER K,SCHINDLER K.Gipuma:Mas-sively parallel multi-view stereo reconstruction[J/OL].https://www.dgpf.de/src/tagung/jt2016/proceedings/papers/34_DLT2016_Galliani_et_al.pdf. [32]SCHONBERGER J L,FRAHM J M.Structure-from-motion revisited[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:4104-4113. [33]CHEN R,HAN S,XU J,et al.Point-based multi-view stereonetwork[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:1538-1547. [34]WEI Z,ZHU Q,MIN C,et al.Aa-rmvsnet:Adaptive aggregation recurrent multi-view stereo network[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:6187-6196. [35]YI P,TANG S,YAO J.DDR-Net:Learning multi-stage multi-view stereo with dynamic depth range[J].arXiv:2103.14275,2021. |
| [1] | DUAN Pengting, WEN Chao, WANG Baoping, WANG Zhenni. Collaborative Semantics Fusion for Multi-agent Behavior Decision-making [J]. Computer Science, 2026, 53(1): 252-261. |
| [2] | ZHANG Xiaomin, ZHAO Junzhi, HE Hongjie. Screen-shooting Resilient Watermarking Method for Document Image Based on Attention Mechanism [J]. Computer Science, 2026, 53(1): 413-422. |
| [3] | FAN Jiabin, WANG Baohui, CHEN Jixuan. Method for Symbol Detection in Substation Layout Diagrams Based on Text-Image MultimodalFusion [J]. Computer Science, 2026, 53(1): 206-215. |
| [4] | LUO Chi, LU Lingyun, LIU Fei. Partial Differential Equation Solving Method Based on Locally Enhanced Fourier NeuralOperators [J]. Computer Science, 2025, 52(9): 144-151. |
| [5] | GUO Husheng, ZHANG Xufei, SUN Yujie, WANG Wenjian. Continuously Evolution Streaming Graph Neural Network [J]. Computer Science, 2025, 52(8): 118-126. |
| [6] | LUO Xuyang, TAN Zhiyi. Knowledge-aware Graph Refinement Network for Recommendation [J]. Computer Science, 2025, 52(7): 103-109. |
| [7] | LIU Chengzhuang, ZHAI Sulan, LIU Haiqing, WANG Kunpeng. Weakly-aligned RGBT Salient Object Detection Based on Multi-modal Feature Alignment [J]. Computer Science, 2025, 52(7): 142-150. |
| [8] | XU Yongwei, REN Haopan, WANG Pengfei. Object Detection Algorithm Based on YOLOv8 Enhancement and Its Application Norms [J]. Computer Science, 2025, 52(7): 189-200. |
| [9] | FANG Chunying, HE Yuankun, WU Anxin. Emotion Recognition Based on Brain Network Connectivity and EEG Microstates [J]. Computer Science, 2025, 52(7): 201-209. |
| [10] | XU Yutao, TANG Shouguo. Visual Question Answering Integrating Visual Common Sense Features and Gated Counting Module [J]. Computer Science, 2025, 52(6A): 240800086-7. |
| [11] | WANG Rui, TANG Zhanjun. Multi-feature Fusion and Ensemble Learning-based Wind Turbine Blade Defect Detection Method [J]. Computer Science, 2025, 52(6A): 240900138-8. |
| [12] | LI Mingjie, HU Yi, YI Zhengming. Flame Image Enhancement with Few Samples Based on Style Weight Modulation Technique [J]. Computer Science, 2025, 52(6A): 240500129-7. |
| [13] | WANG Rong , ZOU Shuping, HAO Pengfei, GUO Jiawei, SHU Peng. Sand Dust Image Enhancement Method Based on Multi-cascaded Attention Interaction [J]. Computer Science, 2025, 52(6A): 240800048-7. |
| [14] | JIN Lu, LIU Mingkun, ZHANG Chunhong, CHEN Kefei, LUO Yaqiong, LI Bo. Pedestrian Re-identification Based on Spatial Transformation and Multi-scale Feature Fusion [J]. Computer Science, 2025, 52(6A): 240800156-7. |
| [15] | ZHANG Yongyu, GUO Chenjuan, WEI Hanyue. Deep Learning Stock Price Probability Prediction Based on Multi-modal Feature Wavelet Decomposition [J]. Computer Science, 2025, 52(6A): 240600140-11. |
|
||