Computer Science ›› 2025, Vol. 52 ›› Issue (3): 239-247.doi: 10.11896/jsjkx.240900123
• Artificial Intelligence • Previous Articles Next Articles
CHENG Dawei1,2,3, WU Jiaxuan1, LI Jiangtong1, DING Zhijun1,2,3, JIANG Changjun1,2,3
CLC Number:
| [1]SON G,JUNG H,HAHM M,et al.Beyond classification:Financial reasoning in state-of-the-art language models[J].arXiv:2305.01505,2023. [2]NISZCZOTA P,ABBAS S.GPT has become financially literate:Insights from financial literacy tests of GPT and a preliminary test of how people use it as a source of advice [J].arXiv:2309.00649,2023. [3]NI X,LI P,LI H.Unified text structuralization with instruction-tuned language models[J].arXiv:2303.14956,2023. [4]ABDALJALIL S,BOUAMOR H.An exploration of automatic text summarization of financial reports[C]//Proceedings of the Third Workshop on Financial Technology and Natural Language Processing.2021:1-7. [5]YEPES A J,YOU Y,MILCZEK J,et al.Financial Report Chunking for Effective Retrieval Augmented Generation[J].arXiv:2402.05131,2024. [6]KHANNA U,GHODRATNAMA S,MOLLA D,et al.Transformer-based models for long document summarisation in financial domain[C]//Financial Narrative Processing Workshop(4th:2022).European Language Resources Association(ELRA),2022:73-78. [7]WANG D,RAMAN N,SIBUE M,et al.DocLLM:A Layout-Aware Generative Language Model for Multimodal Document Understanding[C]//Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers),ACL 2024,Bangkok,Thailand,August 11-16,2024.Association for Computational Linguistics,2024:8529-8548. [8]DENG X,BASHLOVKINA V,HAN F,et al.What do llmsknow about financial markets? a case study on reddit market sentiment analysis[C]//Companion Proceedings of the ACM Web Conference 2023.2023:107-110. [9]VAMOSSY D F,SKOG R.Emtract:Extracting emotions fromsocial media[J].arXiv:2112.03868,2021. [10]JEONG C.Fine-tuning and utilization methods of domain-speci-fic llms[J].arXiv:2401.02981,2024. [11]BĂROIU A C,TRĂUŞAN-MATU Ş.How capable are state-of-the-art language models to cope with sarcasm?[C]//2023 24th International Conference on Control Systems and Computer Science(CSCS).IEEE,2023:399-402. [12]WU S,IRSOY O,LU S,et al.Bloomberggpt:A large language model for finance[J].arXiv:2303.17564,2023. [13]KIM A,MUHN M,NIKOLAEV V V.Bloated disclosures:can ChatGPT help investors process information?[J].arXiv:2306.10224,2023. [14]BHATIA G,NAGOUDI E M B,CAVUSOGLU H,et al.Fin-tral:A family of gpt-4 level multimodal financial large language models[J].arXiv:2402.10986,2024. [15]LEIPPOLD M.Sentiment spin:Attacking financial sentimentwith GPT-3[J].Finance Research Letters,2023,55:103957. [16]JIANG Y,PAN Z,ZHANG X,et al.Empowering time seriesanalysis with large language models:A survey[J].arXiv:2402.03182,2024. [17]ZHANG Z,SUN Y,WANG Z,et al.Large language models for mobility in transportation systems:A survey on forecasting tasks[J].arXiv:2405.02357,2024. [18]JIN M,ZHANGY F,CHEN W,et al.Position:What Can Large Language Models Tell Us about Time Series Analysis[C]//Proceedings of the Forty-first International Conference on Machine Learning.2024. [19]PAN Z,JIANG Y,GARG S,et al.S2 IP-LLM:Semantic Space Informed Prompt Learning with LLM for Time Series Forecasting[C]//Forty-first International Conference on Machine Learning.2024. [20]GRUVER N,FINZI M,QIU S,et al.Large language models are zero-shot time series forecasters [J].arXiv:2310.07820,2023. [21]HENDRYCKS D,BURNS C,BASART S,et al.Measuring Massive Multitask Language Understanding[C]//Proceedings of the International Conference on Learning Representations(ICLR).2021. [22]WELBL J,LIU N F,GARDNER M.Crowdsourcing MultipleChoice Science Questions[C]//Proceedings of the 3rd Workshop on Noisy User-generated Text,NUT@EMNLP 2017,Copenhagen,Denmark,September 7,2017.Association for Computational Linguistics,2017:94-106. [23]ZHONG W J,CUI R X,GUO Y D,et al.AGIEval:A Human-Centric Benchmark for Evaluating Foundation Models[C]//Findings of the Association for Computational Linguistics:NAACL 2024,Mexico City,Mexico,June 16-21,2024.Association for Computational Linguistics,2024:2299-2314. [24]ZHONG M,YIN D,YU T,et al.QMSum:A New Benchmark for Query-based Multi-domain Meeting Summarization[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,NAACL-HLT 2021,Online,June 6-11,2021.Association for Computational Linguistics,2021:5905-5921. [25]SHAH R S,CHAWLA K,EIDNANI D,et al.When flue meets flang:Benchmarks and large pre-trained language model for financial domain[J].arXiv:2211.00083,2022. [26]XIE Q,HAN W,ZHANG X,et al.Pixiu:A large language mo-del,instruction data and evaluation benchmark for finance[J].arXiv:2306.05443,2023. [27]LU D,WU H,LIANG J,et al.Bbt-fin:Comprehensive construction of chinese financial domain pre-trained language model,corpus and benchmark[J].arXiv:2302.09432,2023. [28]ZHANG L,CAI W,LIU Z,et al.Fineval:A chinese financial domain knowledge evaluation benchmark for large language mo-dels[J].arXiv:2308.09975,2023. [29]LI J,LEI Y,BIAN Y,et al.RA-CFGPT:Chinese financial assistant with retrieval-augmented large language mode[J].Frontiers of Computer Science,2024,18(5):185350. [30]ZENG W,REN X,SU T,et al.PanGu-α:Large-scale autoregressive pretrained Chinese language models with auto-parallel computation[J].arXiv:2104.12369,2021. [31]LIANG X,CHENG D,YANG F,et al.F-HMTC:Detecting Financial Events for Investment Decisions Based on Neural Hierarchical Multi-Label Text Classification[C]//IJCAI.2020:4490-4496. [32]KOJIMA T,GU S S,REID M,et al.Large language models are zero-shot reasoners[J].Advances in Neural Information Processing Systems,2022,35:22199-22213. [33]BROWN T,MANN B,RYDER N,et al.Language models arefew-shot learners[J].Advances in Neural Information Proces-sing Systems,2020,33:1877-1901. [34]SUN Y,WANG S,FENG S,et al.Ernie 3.0:Large-scale knowledge enhanced pre-training for language understanding and generation[J].arXiv:2107.02137,2021. [35]YANG A,YANG B,HUI B,et al.Qwen2 technical report[J].arXiv:2407.10671,2024. [36]YANG A,XIAO B,WANG B,et al.Baichuan 2:Open large-scale language models[J].arXiv:2309.10305,2023. [37]ZENG A,LIU X,DU Z,et al.GLM-130B:An Open Bilingual Pre-trained Mode[C]//the Eleventh International Conference on Learning Representations(ICLR 2023),Kigali,Rwanda,May 1-5.2023. [38]DU Z,QIAN Y,LIU X,et al.GLM:General Language Model Pretraining with Autoregressive Blank Infilling[C]//Procee-dings of the Annual Meeting of the Association for Computa-tional Linguistics.2021:320-335. [39]TEAM I L M.Internlm:A multilingual language model withprogressively enhanced capabilities[J/OL].(2023-01-06)[2023-09-27].https://github.com/InternLM/InternLM,2023. |
| [1] | LIU Lilong, LIU Guoming, QI Baoyuan, DENG Xueshan, XUE Dizhan, QIAN Shengsheng. Efficient Inference Techniques of Large Models in Real-world Applications:A Comprehensive Survey [J]. Computer Science, 2026, 53(1): 12-28. |
| [2] | LIU Dayong, DONG Zhiming, GUO Qisheng, GAO Ang, QIU Xuehuan. Research on Architecture and Technology Pathways for Empowering Tactical AdversarialSimulation Experiments with LLMs [J]. Computer Science, 2026, 53(1): 39-50. |
| [3] | WANG Cheng, JIN Cheng. KAN-based Unsupervised Multivariate Time Series Anomaly Detection Network [J]. Computer Science, 2026, 53(1): 89-96. |
| [4] | LIU Hongjian, ZOU Danping, LI Ping. Pedestrian Trajectory Prediction Method Based on Graph Attention Interaction [J]. Computer Science, 2026, 53(1): 97-103. |
| [5] | XUE Jingyan, XIA Jianan, HUO Ruili, LIU Jie, ZHOU Xuezhong. Review of Retinal Image Analysis Methods for OCT/OCTA Based on Deep Learning [J]. Computer Science, 2026, 53(1): 128-140. |
| [6] | ZHAO Wenhao, MEI Meng, WANG Xiaoping, LUO Hangyu. PKHOI:Enhancing Human-Object Interaction Detection Algorithms with Prior Knowledge [J]. Computer Science, 2026, 53(1): 141-152. |
| [7] | ZHOU Bingquan, JIANG Jie, CHEN Jiangmin, ZHAN Lixin. EvR-DETR:Event-RGB Fusion for Lightweight End-to-End Object Detection [J]. Computer Science, 2026, 53(1): 153-162. |
| [8] | LI Fangfang, KONG Yuqiu, LIU Yang , LI Pengyue. Co-salient Object Detection Guided by Category Labels [J]. Computer Science, 2026, 53(1): 163-172. |
| [9] | LI Ang, ZHANG Jieyuan, LIU Xunyun. Camouflaged Object Detection for Aerial Images Based on Bidirectional Cross-attentionCross-domain Fusion [J]. Computer Science, 2026, 53(1): 173-179. |
| [10] | BU Yunyang, QI Binting, BU Fanliang. Multimodal Sentiment Analysis for Interactive Fusion of Dual Perspectives Under Cross-modalInconsistent Perception [J]. Computer Science, 2026, 53(1): 187-194. |
| [11] | LYU Jinggang, GAO Shuo, LI Yuzhi, ZHOU Jin. Facial Expression Recognition with Channel Attention Guided Global-Local Semantic Cooperation [J]. Computer Science, 2026, 53(1): 195-205. |
| [12] | CHEN Jiwei, CHEN Zebin, TAN Guang. Visual Floorplan Localization Based on BEV Perception [J]. Computer Science, 2026, 53(1): 216-223. |
| [13] | KALZANG Gyatso, NYIMA Tashi, QUN Nuo, GAMA Tashi, DORJE Tashi, LOBSANG Yeshi, LHAMO Kyi, ZOM Kyi. Data Augmentation Methods for Tibetan-Chinese Machine Translation Based on Long-tail Words [J]. Computer Science, 2026, 53(1): 224-230. |
| [14] | JIA Jingdong, HOU Xin, WANG Zhe, HUANG Jian. Research on User Data-driven App Fading Functions [J]. Computer Science, 2026, 53(1): 262-270. |
| [15] | CHEN Zhuangzhuang, DENG Yichen, YU Dunhui, XIAO Kui. Cross-language Knowledge Graph Entity Alignment Based on Meta-learning [J]. Computer Science, 2026, 53(1): 271-277. |
|
||