Computer Science ›› 2025, Vol. 52 ›› Issue (4): 138-146.doi: 10.11896/jsjkx.240100131
• Database & Big Data & Data Science • Previous Articles Next Articles
WU Jie, WAN Yuan, LIU Qiujie
CLC Number:
[1]TAN X,TRIGGS B.Fusing Gabor and LBP feature sets for kernel-based face recognition[C]//International Wrokshop on Analysis and Modeling of Faces and Gestures.Berlin:Springer,2007:235-249. [2]WANG X,HAN T X,YAN S.An HOP-LBP human detectorwith partial occlusion handling[C]//2009 IEEE 12th International Conference on Computer Vision.IEEE,2009:32-39. [3]KUMAR A,DAUMÉ H.A co-training approach for multi-view spectral clustering[C]//Proceedings of the 28th International Conference on Machine Learning.Madison,WI:Omnipress,2011:393-400. [4]YU S,KRISHNAPURAM B,ROSALES R,et al.Bayesian co-training[J].Journal of Machine Learning Research,2011,12(3):2649-2680. [5]WANG W,ZHOU Z H.A new analysis of co-training[C]//Proceedings of the 27th International Conference on Machine Learning.Madison,WI:Omnipress,2010:2-3. [6]GÖNEN M,ALPAYDIN E.Multiple kernel learning algorithms[J].The Journal of Machine Learning Research,2011,12(4):2211-2268. [7]KANG Z,SHI G,HUANG S D,et al.Multi-graph fusion formulti-view spectral clustering[J].Knowledge-Based Systems,2020,189(2):105102. [8]CAO X C,ZHANG C Q,FU H Z,et al.Diversity-induced multi-view subspace clustering[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2015:586-594. [9]NG A Y,JORDAN M I,WEISS Y.On spectral clustering:analysis and an algorithm[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems.Cambridge:MIT Press,2002:849-856. [10]LIU G C,YAN S C.Latent low-Rank representation for sub-space segmentation and feature extraction[C]//2011 IEEE 13th International Conference on Computer Vision.IEEE,2011:1615-1622. [11]LIU G C,LIN Z C,YU Y.Robust subspace segmentation by low-rank representation[C]//Proceedings of the 27th International Conference on Machine Learning.Haifa:OMNI Press,2010:663-670. [12]XIA G Y,SUN H J,FENG L,et al.Human motion segmentation via robust kernel sparse subspace clustering [J].IEEE Transactions on Image Processing,2018,27(1):135-105. [13]JI P,ZHONG Y R,LI H D,et al.Null space clustering with applications to motion segmentation and face clustering [C]//Proceedings of the 2014 IEEE International Conference on Image Processing.Piscataway:IEEE,2014:283-287. [14]MA Y,DERKSEN H,HONG W,et al.Segmentation of multivariate mixed data via lossy data coding and compression[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(9):1546-1562. [15]ELHAMIFAR E,VIDAL R.Sparse subspace clustering:algorithm,theory,and applications[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(11):2765-2781. [16]LIU G C,LIN Z C,YAN S C,et al.Robust recovery of subspace structures by low-rank representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(1):171-184. [17]LI C G,VIDAL R.Structured sparse subspace clustering:a unified optimization framework[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2015:277-286. [18]LU C Y,FENG J S,LIN Z C,et al.Subspace clustering by block diagonal representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(2):287-501. [19]ZHANG C Q,HU Q H,FU H Z,et al.Latent multi-view subspace clustering[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2017:4279-4287. [20]LUO S R,ZHANG C Q,ZHANG W,et al.Consistent and specific multi-view subspace clustering[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence.Menlo Park,CA:AAAI Press,2018:3730-3737. [21]WANG X,GUO X,LEI Z,et al.Exclusivity-consistency regularized multi-view subspace clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2017:923-931. [22]HAN T H,NIU S J,GAO X Z,et al.Deep low-rank graph con-volutional subspace clustering for hyperspectral image[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-13. [23]LI S,LIU L,LIU J,et al.SC-GAN:Subspace clustering based GAN for automatic expression manipulation[J].Pattern Recognition,2023,134:109072. [24]YANG X J,YAN J C,CHENG Y,et al.Learning Deep Generative Clustering via Mutual Information Maximization[J].IEEE Transactions on Neural Networks and Learning Systems,2023,34(9):6263-6275. [25]LV J C,KANG Z,LU X,et al.Pseudo-supervised deep subspace clustering[J].IEEE Transactions on Image Processing,2021,30:5252-5263. [26]Convex optimization & Euclidean distance geometry[EB/OL].https://www.convexoptimization.com/TOOLS/0976401304.pdf. [27]SI X M,YIN Q Y,ZHAO X J,et al.Consistent and diverse multi-View subspace clustering with structure constraint[J].Pattern Recognition,2022,121:108196. [28]XIA R K,PAN Y,DU L,et al.Robust multi-view spectral clustering via low-rank and sparse decomposition[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence.Palo Alto,CA:AAAI,2014:2149-2155. [29]ZHOU T,ZHANG C Q,PENG X,et al.Dual shared-specific multi-view subspace clustering [J].IEEE Transactions on Cybernetics,2020,50(8):3517-3530. [30]JIANG B,QIU F Y,WANG L P,et al.Bi-level weighted multi-view clustering via hybrid particle swarm optimization [J].Information Processing & Management,2016,52(3):387-398. [31]LIU W Z,JIANG L,LIU D,et al.Tensorial Multi-Linear Multi-View Clustering via Schatten-p Norm[J].IEEE Access,2023,11:11132-11142. |
[1] | YE Lishuo, HE Zhixue. Multi-granularity Time Series Contrastive Learning Method Incorporating Time-Frequency Features [J]. Computer Science, 2025, 52(1): 170-182. |
[2] | LUO Hangyu, WANG Xiaoping, MEI Meng, ZHAO Wenhao, LIU Sichun. Contrastive Representation Learning for Industrial Defect Detection [J]. Computer Science, 2025, 52(1): 210-220. |
[3] | MENG Lingjun, CHEN Hongchang, WANG Gengrun. Social Bots Detection Based on Multi-relationship Graph Attention Network [J]. Computer Science, 2025, 52(1): 298-306. |
[4] | NIU Guanglin, LIN Zhen. Survey of Knowledge Graph Representation Learning for Relation Feature Modeling [J]. Computer Science, 2024, 51(9): 182-195. |
[5] | XU Bei, LIU Tong. Semi-supervised Emotional Music Generation Method Based on Improved Gaussian Mixture Variational Autoencoders [J]. Computer Science, 2024, 51(8): 281-296. |
[6] | WEI Ziang, PENG Jian, HUANG Feihu, JU Shenggen. Text Classification Method Based on Multi Graph Convolution and Hierarchical Pooling [J]. Computer Science, 2024, 51(7): 303-309. |
[7] | ZHANG Hui, ZHANG Xiaoxiong, DING Kun, LIU Shanshan. Device Fault Inference and Prediction Method Based on Dynamic Graph Representation [J]. Computer Science, 2024, 51(7): 310-318. |
[8] | LIU Wei, SONG You, ZHUO Peiyan, WU Weiqiang, LIAN Xin. Study on Kcore-GCN Anti-fraud Algorithm Fusing Multi-source Graph Features [J]. Computer Science, 2024, 51(6A): 230600040-7. |
[9] | HE Yifan, HE Yulin, CUI Laizhong, HUANG Zhexue. Subspace-based I-nice Clustering Algorithm [J]. Computer Science, 2024, 51(6): 153-160. |
[10] | LI Zichen, YI Xiuwen, CHEN Shun, ZHANG Junbo, LI Tianrui. Government Event Dispatch Approach Based on Deep Multi-view Network [J]. Computer Science, 2024, 51(5): 216-222. |
[11] | YANG Xuhua, ZHANG Lian, YE Lei. Adaptive Context Matching Network for Few-shot Knowledge Graph Completion [J]. Computer Science, 2024, 51(5): 223-231. |
[12] | HUANG Shuo, SUN Liang, WANG Meiling, ZHANG Daoqiang. Multi-view Autoencoder-based Functional Alignment of Multi-subject fMRI [J]. Computer Science, 2024, 51(3): 141-146. |
[13] | YANG Bo, LUO Jiachen, SONG Yantao, WU Hongtao, PENG Furong. Time Series Clustering Method Based on Contrastive Learning [J]. Computer Science, 2024, 51(2): 63-72. |
[14] | LIU Pengyi, HU Jie, WANG Hongjun, PENG Bo. Multi-view Attributed Graph Clustering Based on Contrast Consensus Graph Learning [J]. Computer Science, 2024, 51(11): 73-80. |
[15] | WANG Shuaiwei, LEI Jie, FENG Zunlei, LIANG Ronghua. Review of Visual Representation Learning [J]. Computer Science, 2024, 51(11): 112-132. |
|