Computer Science ›› 2024, Vol. 51 ›› Issue (6): 153-160.doi: 10.11896/jsjkx.230800200
• Database & Big Data & Data Science • Previous Articles Next Articles
HE Yifan1, HE Yulin2, CUI Laizhong1,2, HUANG Zhexue1,2
CLC Number:
[1]PARSONS L,HAQUE E,LIU H.Subspace clustering for high dimensional data:a review[J].ACM SIGKDD Explorations Newsletter,2004,6(1):90-105. [2]XU R,WUNSCH D.Survey of clustering algorithms[J].IEEE Transactions on Neural Networks,2005,16(3):645-678. [3]ZHU Y,TING K M,CARMAN M J.Grouping points by shared subspaces for effective subspace clustering[J].Pattern Recognition,2018,83:230-244. [4]YU Z,LUO P,YOU J,et al.Incremental semi-supervised clustering ensemble for high dimensional data clustering[J].IEEE Transactions on Knowledge and Data Engineering,2015,28(3):701-714. [5]GOLALIPOUR K,AKBARI E,HAMIDI S S,et al.From clustering to clustering ensemble selection:A review[J].Enginee-ring Applications of Artificial Intelligence,2021,104:104388. [6]CHEN X,YE Y,XU X,et al.A feature group weighting method for subspace clustering of high-dimensional data[J].Pattern Recognition,2012,45(1):434-446. [7]PAUL D,SAHA S,MATHEW J.Improved subspace clustering algorithm using multi-objective framework and subspace optimization[J].Expert Systems with Applications,2020,158:113487. [8]GAN G,NG M K P.Subspace clustering with automatic feature grouping[J].Pattern Recognition,2015,48(11):3703-3713. [9]LIU Y,JIAO L C,SHANG F.Anefficient matrix factorizationbased low-rank representation for subspace clustering[J].Pattern Recognition,2013,46(1):284-292. [10]ZHU P,ZHU W,HU Q,et al.Subspace clustering guided unsupervised feature selection[J].Pattern Recognition,2017,66:364-374. [11]MASUD M A,HUANG J Z,WEI C,et al.I-nice:A new approach for identifying the number of clusters and initial cluster centres[J].Information Sciences,2018,466:129-151. [12]AGGARWAL C C,WOLF J L,YU P S,et al.Fast algorithms for projected clustering[J].ACM SIGMOD Record,1999,28(2):61-72. [13]AGGARWAL C C,YU P S.Finding generalized projected clusters in high dimensional spaces[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data.2000:70-81. [14]GOIL S,NAGESH H,CHOUDHARY A.Mafia:Efficient and scalable subspace clustering for very large data sets[C]//Proceedings of the fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.1999:443-452. [15]CHENG C H,FU A W,ZHANG Y.Entropy-based subspaceclustering for mining numerical data[C]//Proceedings of the fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.1999:84-93. [16]AGRAWAL R,GEHRKE J,GUNOPULOS D,et al.Automatic subspace clustering of high dimensional data for data mining applications[C]//Proceedings of the fourth ACM SIGMOD International Conference on Management of Data.1998:94-105. [17]KAILING K,KRIEGELH P,KRÖGER P.Density-connectedsubspace clustering for high-dimensional data[C]//Proceedings of the 2004 SIAM International Conference on Data Mining.Society for Industrial and Applied Mathematics,2004:246-256. [18]ESTER M,KRIEGEL H P,SANDER J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 1996 ACM SIGKDD Conference on Knowledge Discovery And Data Mining.1996:226-231. [19]HAHSLER M,PIEKENBROCK M,DORAN D.DBSCAN:Fast density-based clustering with R[J].Journal of Statistical Software,2019,91:1-30. [20]HUANG X,YE Y,GUO H,et al.DSKmeans:a new kmeans-type approach to discriminative subspace clustering[J].Know-ledge-Based Systems,2014,70:293-300. [21]ZOGRAFOS V,ELLIS L,MESTER R.Discriminative subspace clustering[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition.2013:2107-2114. [22]YAMAGUCHI M,IRIE G,KAWANISHI T,et al.Subspacestructure-aware spectral clustering for robust subspace clustering[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision.2019:9875-9884. [23]PASSALIS N,TEFAS A.Discriminative clustering using regularized subspace learning[J].Pattern Recognition,2019,96:106982. [24]XIE J,GIRSHICK R,FARHADI A.Unsupervised deep embedding for clustering analysis[C]//Proceedings of the 2016 International Conference on Machine Learning.2016:478-487. [25]HERSHEY J R,CHEN Z,LE ROUX J,et al.Deep clustering:Discriminative embeddings for segmentation and separation[C]//Proceedings of the 2016 IEEE International Conference on Acoustics,Speech and Signal Processing.2016:31-35. [26]CHEN Y,XIAO X,ZHOU Y.Multi-view subspace clustering via simultaneously learning the representation tensor and affinity matrix[J].Pattern Recognition,2020,106:107441. [27]WANG C,CHEN X,NIE F,et al.Directly solving normalized cut for multi-view data[J].Pattern Recognition,2022,130:108809. [28]ELHAMIFAR E,VIDAL R.Sparse subspace clustering:Algorithm,theory,and applications[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(11):2765-2781. [29]LIU G,LIN Z,YAN S,et al.Robust recovery of subspace structures by low-rank representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,35(1):171-184. [30]SHAO C L,SUN T F,DING S F.Ensemble clustering based on information entropy weighted[J].Journal of Nanjing University(Natural Sciences),2021,57(2):189-196. [31]DUH Y,ZHANG J,WANG W J.A deep self-supervised clustering ensemble algorithm[J].CAAI Transactions on Intelligent Systems,2020,15(6):1113-1120. [32]ZHOU P,WANG X,DU L,et al.Clustering ensemble via structured hypergraph learning[J].Information Fusion,2022,78:171-179. [33]THORNDIKE R.Who belongs in the family?[J].Psychometri-ka,1953,18(4):267-276. [34]ROUSSEEUW P J.Silhouettes:a graphical aid to the interpretation and validation of cluster analysis[J].Journal of Computational and Applied Mathematics,1987,20:53-65. [35]HUBERT L,ARABIE P.Comparing partitions[J].Journal of Classification,1985,2(1):193-218. |
[1] | CAI Jiacheng, DONG Fangmin, SUN Shuifa, TANG Yongheng. Unsupervised Learning of Monocular Depth Estimation:A Survey [J]. Computer Science, 2024, 51(2): 117-134. |
[2] | CAI Mengnan, SHEN Guohua, HUANG Zhiqiu, YANG Yang. High-dimensional Data Publication Under Local Differential Privacy [J]. Computer Science, 2024, 51(2): 322-332. |
[3] | JING Yeyiran, YU Zeng, SHI Yunxiao, LI Tianrui. Review of Unsupervised Domain Adaptive Person Re-identification Based on Pseudo-labels [J]. Computer Science, 2024, 51(1): 72-83. |
[4] | XU Jie, WANG Lisong. Contrastive Clustering with Consistent Structural Relations [J]. Computer Science, 2023, 50(9): 123-129. |
[5] | LIANG Yunhui, GAN Jianwen, CHEN Yan, ZHOU Peng, DU Liang. Unsupervised Feature Selection Algorithm Based on Dual Manifold Re-ranking [J]. Computer Science, 2023, 50(7): 72-81. |
[6] | SHEN Yuancheng, BAN Rui, CHEN Xin, HUA Runduo, WANG Yunhai. Anomaly Detection Algorithm for Network Device Configuration Based on Configuration Statement Tree [J]. Computer Science, 2023, 50(11A): 230200128-10. |
[7] | XIE Zhuo, KANG Le, ZHOU Lijuan, ZHANG Zhihong. Clustering Method Based on Contrastive Learning for Multi-relation Attribute Graph [J]. Computer Science, 2023, 50(11): 62-70. |
[8] | CAO Dongtao, SHU Wenhao, QIAN Jin. Feature Selection Algorithm Based on Rough Set and Density Peak Clustering [J]. Computer Science, 2023, 50(10): 37-47. |
[9] | WANG Bin, LIANG Yudong, LIU Zhe, ZHANG Chao, LI Deyu. Study on Unsupervised Image Dehazing and Low-light Image Enhancement Algorithms Based on Luminance Adjustment [J]. Computer Science, 2023, 50(1): 123-130. |
[10] | SONG Jie, LIANG Mei-yu, XUE Zhe, DU Jun-ping, KOU Fei-fei. Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level [J]. Computer Science, 2022, 49(9): 64-69. |
[11] | ZHANG Hua-wei, LU Xin-dong, ZHU Xiao-ming, SUN Jun-tao. Structure Preserved Multi-view Subspace Clustering Based on t-SVD [J]. Computer Science, 2022, 49(11A): 210800215-6. |
[12] | ZHANG Yu-xin, CHEN Yi-qiang. Driver Distraction Detection Based on Multi-scale Feature Fusion Network [J]. Computer Science, 2022, 49(11): 170-178. |
[13] | LIU Yi, MAO Ying-chi, CHENG Yang-kun, GAO Jian, WANG Long-bao. Locality and Consistency Based Sequential Ensemble Method for Outlier Detection [J]. Computer Science, 2022, 49(1): 146-152. |
[14] | HOU Hong-xu, SUN Shuo, WU Nier. Survey of Mongolian-Chinese Neural Machine Translation [J]. Computer Science, 2022, 49(1): 31-40. |
[15] | ZHOU Gang, GUO Fu-liang. Research on Ensemble Learning Method Based on Feature Selection for High-dimensional Data [J]. Computer Science, 2021, 48(6A): 250-254. |
|