Computer Science ›› 2025, Vol. 52 ›› Issue (6): 324-329.doi: 10.11896/jsjkx.240800017
• Artificial Intelligence • Previous Articles Next Articles
GAO Hongkui, MA Ruixiang, BAO Qihao, XIA Shaojie, QU Chongxiao
CLC Number:
[1]OUYANG L,WU J,JIANG X,et al.Training language models to follow instructions with human feedback[J].Advances in Neural Information Processing Systems,2022,35:27730-27744. [2]ACHIAM J,ADLER S,AGARWAL S,et al.GPT-4 technicalreport[J].arXiv:2303.08774,2023. [3]GAO Y,XIONG Y,GAO X,et al.Retrieval-augmented generation for large language models:A survey[J].arXiv:2312.10997,2023. [4]LEWIS P,PEREZ E,PIKTUS A,et al.Retrieval-augmentedgeneration for knowledge-intensive NLP tasks[C]//Procee-dings of the 34th International Conference on Neural Information Processing Systems.Red Hook,NY:Curran Associates Inc.,2020:9459-9474. [5]YORAN O,WOLFSON T,RAM O,et al.Making retrieval-augmented language models robust to irrelevant context[J].arXiv:2310.01558,2023. [6]YU W,ZHANG H PAN,X,et al.2023.Chain-of-note:Enhancing robustness in retrieval-augmented language models[C]//Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing.ACL,2024:14672-14685. [7]LUO Y,YANG Z,MENG F,et al.An empirical study of catastrophic forgetting in large language models during continual fine-tuning[J].arXiv:2308.08747,2023. [8]IZACARD G,GRAVE E.Leveraging passage retrieval withgenerative models for open do-main question answering[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics:Main Volume.ACL,2021:874-880. [9]KARPUKHIN V,OGUZ B,MIN S,et al.Dense passage retrie-val for open-domain question answering[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing.ACL,2020:6769-6781. [10]SHI F,CHEN X,MISRA K,et al.Large language models can be easily distracted by irrelevant context[C]//Proceedings of the 40th International Conference on Machine Learning.JMLR,2023:31210-31227. [11]GAO T,YEN H,YU J,et al.Enabling large language models to generate text with citations[J].arXiv:2305.14627,2023. [12]ASAI A,WU Z,WANG Y,et al.Self-rag:Learning to retrieve,generate,and critique through self-reflection[J].arXiv:2310.11511,2023. [13]PRESS O,ZHANG M,MIN S,et al.Measuring and narrowing the compositionality gap in language models[J].arXiv:2210.03350,2022. [14]XU S,PANG L,SHEN H,et al.Search-in-the-chain:To-wards the accurate,credible and traceable contengeneration for complex knowledge-intensive tasks[J].arXiv:2304.14732,2023. [15]DHULIAWALA S,KOMEILI M,XU J,et al.Chain-of-verification reduces hallucination in large language modelss[J].arXiv:2309.11495,2023. [16]CHEN J,XIAO S,ZHANG P,et al.BGE M3-embedding:Multi-lingual,multi-functionality,multi-granularity text embeddings through self-knowledge distillation[J].arXiv:2402.03216,2024. [17]ROBERTSON S,ZARAGOZA H.The probabilistic relevanceframework:BM25 and beyond[J].Foundations and Trends in Information Retrieval,2009,3(4):333-389. [18]MIHALCEA R,TARAU P:TextRank:Bringing order into text[C]//Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing.ACL,2024:404-411. [19]ZOU L,ZHANG S,CAI H,et al.Pre-trained language model based ranking in baidu search[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.New York:ACM,2021:4014-4022. [20]FAN Y,XIE X,CAI Y,et al.Pre-training methods in information retrieval[J].Foundations and Trends in Information Retrieval,2022,16(3):178-317. [21]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [22]KIM Y.Convolutional Neural Networks for Sentence Classification[J].arXiv:1408.5882,2014. [23]BAI J,BAI S,CHU Y,et al.Qwen technical report[J].arXiv:2309.16609,2023. [24]RAJPURKAR P,ZHANG J,LOPYREV K,et al.SQuAD:100 000+ questions for machine comprehension of text[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.ACL,2016:2383-2392. |
[1] | LI Bo, MO Xian. Application of Large Language Models in Recommendation System [J]. Computer Science, 2025, 52(6A): 240400097-7. |
[2] | HU Caishun. Study on Named Entity Recognition Algorithms in Audit Domain Based on Large LanguageModels [J]. Computer Science, 2025, 52(6A): 240700190-4. |
[3] | DUN Jingbo, LI Zhuo. Survey on Transmission Optimization Technologies for Federated Large Language Model Training [J]. Computer Science, 2025, 52(1): 42-55. |
[4] | LI Tingting, WANG Qi, WANG Jiakang, XU Yongjun. SWARM-LLM:An Unmanned Swarm Task Planning System Based on Large Language Models [J]. Computer Science, 2025, 52(1): 72-79. |
[5] | CHENG Zhiyu, CHEN Xinglin, WANG Jing, ZHOU Zhongyuan, ZHANG Zhizheng. Retrieval-augmented Generative Intelligence Question Answering Technology Based on Knowledge Graph [J]. Computer Science, 2025, 52(1): 87-93. |
[6] | LIU Yumeng, ZHAO Yijing, WANG Bicong, WANG Chao, ZHANG Baomin. Advances in SQL Intelligent Synthesis Technology [J]. Computer Science, 2024, 51(7): 40-48. |
[7] | LI Zhanqi, WU Xinwei, ZHANG Lei, LIU Quanzhou, XIE Hui, XIONG Deyi. Automatic Test Case Generation Method for Automotive Electronic Control System Verification [J]. Computer Science, 2024, 51(12): 63-70. |
[8] | ZHAO Yue, HE Jinwen, ZHU Shenchen, LI Congyi, ZHANG Yingjie, CHEN Kai. Security of Large Language Models:Current Status and Challenges [J]. Computer Science, 2024, 51(1): 68-71. |
[9] | . [J]. Computer Science, 2007, 34(3): 162-164. |
|