Computer Science ›› 2025, Vol. 52 ›› Issue (6A): 240800141-7.doi: 10.11896/jsjkx.240800141
• Large Language Model Technology and Its Application • Previous Articles Next Articles
BAI Yuntian, HAO Wenning, JIN Dawei
CLC Number:
[1]CHEND Q,ADAM F,JASON W,et al.Reading Wikipedia to Answer Open-Doman Questions [C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).Vancouver,Canada:Association for Computational Linguistics,2017:1870-1879. [2]GAO S,REN Z C,ZHAO Y H,et al.Product-Aware Answer Generation in E-Commerce Question-Answering [C]//Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining.Melbourne,VIC,Australia:ACM,2019:531-539. [3]MIN S,BOYD-GRABER J,ALBERTI C,et al.NeurIPS 2020EfficientQA Competition:Systems,Analyses and Lessons Learned [C]//Proceedings of the NeurIPS 2020 Competition and Demonstration Track.PMLR,2021:86-111. [4]PETRONI F,PIKTUS A,FAN A,et al.KILT:a Benchmark for Knowledge Intensive Language Tasks [C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Online:Association for Computational Linguistics,2021:2523-2544. [5]CHEN D Q,FISCH A,WESTON J,et al.eading Wikipedia to Answer Open-Domain Questions [C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).Vancouver,Canada:Association for Computational Linguistics,2017:1870-1879. [6]KARPUKHIN V,OGUZ B,MIN S,et al.Dense Passage Retrieval for Open-Domain Question Answering [C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP).Online:Association for Computational Linguistics,2020:6769-6781. [7]LEWIS P,PEREZ E,PIKTUS A,et al.Retrieval-augmentedgeneration for knowledge-intensive NLP tasks [C]//Proceedings of the 34th International Conference on Neural Information Processing Systems.Red Hook,NY,USA:Curran Associates Inc.,2020:793-809. [8]IZACARD G,GRAVE E.Leveraging Passage Retrieval withGenerative Models for Open Domain Question Answering [C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics:Main Volume.Online:Association for Computational Linguistics,2021:874-880. [9]BROWN T,MANN B,RYDER N,et al.Language models are few-shot learners [C]//Proceedings of the 34th International Conference on Neural Information Processing Systems.Red Hook,NY,USA:Curran Associates Inc.,2020:159-183. [10]ZHAO W X,ZHOU K,LI J,et al.A Survey of Large Language Models [J].arXiv:2303.18223,2023. [11]MALLEN A,ASAI A,ZHONG V,et al.When Not to Trust Language Models:Investigating Effectiveness of Parametric and Non-Parametric Memories [C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).Toronto,Canada:Association for Computational Linguistics,2023:9802-9822. [12]REN R Y,WANG Y H,QU Y Q,etal.Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [J].arXiv:2307.11019,2023. [13]XU J,SZLAM A,WESTON J.Beyond Goldfish Memory:Long-Term Open-Domain Conversation [C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).Dublin,Ireland:Association for Computational Linguistics,2022:5180-5197. [14]MOJTABA K,KURT S,JASON W.Internet-Augmented Dialogue Generation [C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).Dublin,Ireland:Association for Computational Linguistics,2022:8460-8478. [15]KELVIN G,KENTON L,ZORA T,et al.REALM:Retrieval-Augmented Language Model Pre-Training[C]//International Conference on Machine Learning.2020:3929-3938. [16]LIUNF,LINK,HEWITT J,et al.Lost in the Middle:How Language Models Use Long Contexts[J].Transactions of the Association for Computational Linguistics,2024,12:157-173. [17]AKARI A,ZEQIU W,WANG Y Z,et al.Self-RAG:Learning to Retrieve,Generate,and Critique through Self-Reflection [J].arXiv:2310.11511,2023. [18]LUO H Y,CHUANG Y S,GONG Y,et al.Search Augmented Instruction Learning [C]//Findings of the Association for Computational Linguistics(EMNLP 2023).Singapore:Association for Computational Linguistics,2023:3717-3729. [19]WANG Y,LI P,SUN M,et al.Self-Knowledge Guided RetrievalAugmentation for Large Language Models [C]//Findings of the Association for Computational Linguistics(EMNLP 2023).Singapore:Association for Computational Linguistics,2023:10303-10315. [20]FREDA S,CHEN X Y,KANISHKA M,et al.Large Language Models Can Be Easily Distracted by Irrelevant Context [C]//Proceedings of the 40th International Conference on Machine Learning.PMLR,2023:31210-31227. [21]CHRISTOPHER S,ZHONG Z X,LEE J,et al.Simple Entity-Centric Questions Challenge Dense Retrievers [C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.Online and Punta Cana,Dominican Republic:Association for Computational Linguistics,2021:6138-6148. [22]QI P,LEE H,SIDO T,et al.Answering Open-Domain Questions of Varying Reasoning Steps from Text [C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.Online and Punta Cana,Dominican Republic:Association for Computational Linguistics,2021:3599-3614. [23]LIU Y,HASHIMOTO K,ZHOU Y B,et al.Dense Hierarchical Retrieval for Open-domain Question Answering [C]//Findings of the Association for Computational Linguistics:EMNLP 2021.Punta Cana,Dominican Republic:Association for Computational Linguistics,2021:188-200. [24]ZHU Y T,YUAN H Y,WANG S T,et al.Large LanguageModels for Information Retrieval:A Survey [J].arXiv:2308.07107,2023. [25]ZHUANG H L,QIN Z,HUI K,et al.Beyond Yes and No:Improving Zero-Shot LLM Rankers via Scoring Fine-Grained Relevance Labels [C]//Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies(Volume 2:Short Papers).Mexico City,Mexico:Association for Computational Linguistics,2024:358-370. [26]MA X G,ZHANG X Y,PRADEEP R,et al.Zero-Shot Listwise Document Reranking with a Large Language Model [J].arXiv:2305.02156,2023. [27]NOGUEIRA R,YANG W,CHO K,et al.Multi-Stage Document Ranking with BERT [J].arXiv:1910.14424,2019. [28]DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding [C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1(Long and Short Papers).Minneapolis,Minnesota:Association for Computational Linguistics,2019:4171-4186. [29]BOUALILI L,MORENO J G,BOUGHANEM M.Highlightingexact matching via marking strategies for ad hoc document ranking with pretrained contextualized language models [C]//Actes de la 18e Conférence en Recherche d’Information et Applications(CORIA).Paris,France:ATALA,2023:201-201. [30]GAO L,DAI Z,CALLAN J.Rethink Training of BERTRerankers in Multi-stage Retrieval Pipeline [C]//Advances in Information Retrieval:43rd European Conference on IR Research,ECIR 2021,Proceedings,Part II.Berlin,Heidelberg:Springer-Verlag,2021:280-286. [31]YANG Z,QI P,ZHANG S,et al.HotpotQA:A Dataset for Diverse,Explainable Multi-hop Question Answering [C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.Brussels,Belgium:Association for Computational Linguistics,2018:2369-2380. [32]RAJPURKAR P,ZHANG J,LOPYREV K,et al.SQuAD:00 000+Questions for Machine Comprehension of Text [C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.Austin,Texas:Association for Computational Linguistics,2016:2383-2392. [33]LIN J,MA X,LIN S,et al.Pyserini:A Python Toolkit for Reproducible Information Retrieval Research with Sparse and Dense Representations [C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.Virtual Event,Canada:Association for Computing Machinery,2021:2356-2362. [34]CHEN J,XIAO S,ZHANG P,et al.M3-Embedding:Multi-Linguality,Multi-Functionality,Multi-Granularity Text Embeddings Through Self-Knowledge Distillation [C]//Findings of the Association for Computational Linguistics ACL 2024.Bangkok,Thailand and virtual meeting:Association for Computational Linguistics,2024:2318-2335. [35]ALEX M,AKARI A,VICTOR Z,et al.When Not to Trust Language Models:Investigating Effectiveness of Parametric and Non-Parametric Memories [C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).Toronto,Canada:Association for Computational Linguistics,2023:9802-9822. [36]MA X,GONG Y,HE P,et al.Query Rewriting in Retrieval-Augmented Large Language Models [C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing.Singapore:Association for Computational Linguistics,2023:5303-5315. [37]KIM J,NAM J,MO S,et al.SuRe:Summarizing Retrievalsusing Answer Candidates for Open-domain QA of LLMs [C]//The Twelfth International Conference on Learning Representations.2024. [38]SHI W,MIN S,YASUNAGA M,et al.REPLUG:Retrieval-Augmented Black-Box Language Models [C]//Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies(Volume 1:Long Papers).Mexico City,Mexico:Association for Computational Linguistics,2024:8371-8384. |
[1] | TU Ji, XIAO Wendong, TU Wenji, LI Lijian. Application of Large Language Models in Medical Education:Current Situation,Challenges and Future [J]. Computer Science, 2025, 52(6A): 240400121-6. |
[2] | LI Bo, MO Xian. Application of Large Language Models in Recommendation System [J]. Computer Science, 2025, 52(6A): 240400097-7. |
[3] | ZOU Rui, YANG Jian, ZHANG Kai. Low-resource Vietnamese Speech Synthesis Based on Phoneme Large Language Model andDiffusion Model [J]. Computer Science, 2025, 52(6A): 240700138-6. |
[4] | ZHOU Lei, SHI Huaifeng, YANG Kai, WANG Rui, LIU Chaofan. Intelligent Prediction of Network Traffic Based on Large Language Model [J]. Computer Science, 2025, 52(6A): 241100058-7. |
[5] | ZHANG Le, CHE Chao, LIANG Yan. Hallucinations Proactive Relief in Diabetes Q&A LLM [J]. Computer Science, 2025, 52(6A): 240700182-10. |
[6] | YIN Baosheng, ZONG Chen. Research on Semantic Fusion of Chinese Polysemous Words Based on Large LanguageModel [J]. Computer Science, 2025, 52(6A): 240400139-7. |
[7] | HU Caishun. Study on Named Entity Recognition Algorithms in Audit Domain Based on Large LanguageModels [J]. Computer Science, 2025, 52(6A): 240700190-4. |
[8] | ZHAO Zheyu, WANG Zhongqing, WANG Hongling. Commodity Attribute Classification Method Based on Dual Pre-training [J]. Computer Science, 2025, 52(6A): 240500127-8. |
[9] | GAO Hongkui, MA Ruixiang, BAO Qihao, XIA Shaojie, QU Chongxiao. Research on Hybrid Retrieval-augmented Dual-tower Model [J]. Computer Science, 2025, 52(6): 324-329. |
[10] | CHEN Xuhao, HU Sipeng, LIU Hongchao, LIU Boran, TANG Dan, ZHAO Di. Research on LLM Vector Dot Product Acceleration Based on RISC-V Matrix Instruction Set Extension [J]. Computer Science, 2025, 52(5): 83-90. |
[11] | CONG Yingnan, HAN Linrui, MA Jiayu, ZHU Jinqing. Research on Intelligent Judgment of Criminal Cases Based on Large Language Models [J]. Computer Science, 2025, 52(5): 248-259. |
[12] | ZHU Shucheng, HUO Hongying, WANG Weikang, LIU Ying, LIU Pengyuan. Automatic Optimization and Evaluation of Prompt Fairness Based on Large Language Model Itself [J]. Computer Science, 2025, 52(4): 240-248. |
[13] | SONG Xingnuo, WANG Congyan, CHEN Mingkai. Survey on 3D Scene Reconstruction Techniques in Metaverse [J]. Computer Science, 2025, 52(3): 17-32. |
[14] | CHENG Dawei, WU Jiaxuan, LI Jiangtong, DING Zhijun, JIANG Changjun. Study on Evaluation Framework of Large Language Model’s Financial Scenario Capability [J]. Computer Science, 2025, 52(3): 239-247. |
[15] | HUANG Xueqin, ZHANG Sheng, ZHU Xianqiang, ZHANG Qianzhen, ZHU Cheng. Generative Task Network:New Paradigm for Autonomic Task Planning and Execution Based on LLM [J]. Computer Science, 2025, 52(3): 248-259. |
|