Computer Science ›› 2025, Vol. 52 ›› Issue (6A): 240400139-7.doi: 10.11896/jsjkx.240400139
• Large Language Model Technology and Its Application • Previous Articles Next Articles
YIN Baosheng, ZONG Chen
CLC Number:
[1]LI J Z,HUANG C N.An Unsupervised Word Sense Tagging Method Based on Transformation [J].Tsinghua Science and Technology,1999(7):116-120. [2]SHI J M,ZAN H Y,HAN Y J.Specification of the large-scale Chinese lexical semantic knowledge base building[J].Journal of Shanxi University(Natural ence Edition),2015,38(4):581-587. [3]FELLBAUMC.WordNet[M]//Theory and applications of ontology:computer applications.Dordrecht:Springer Netherlands,2010:231-243. [4]DONG Z,DONG Q.HowNet-a hybrid language and knowledge resource[C]//International Conference on Natural Language Processing and Knowledge Engineering,2003.IEEE,2003:820-824. [5]JIN P,WU Y F,YU S W.A Review of Word Sense Annotation Corpora [J].Journal of Chinese Information Science,2008,22(3):8. [6]Institute of Linguistics,Chinese Academy of Social Sciences.Modern Chinese Dictionary [M].The Commercial Press,2002. [7]LI Z,DING N,LIU Z,et al.Chinese relation extraction with multi-grained information and external linguistic knowledge[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:4377-4386. [8]TAUCHMANN C.Advanced Corpus Annotation Strategies for NLP.Applications in Automatic Summarization and Text Classification[D].Technische Universität Darmstadt,2021. [9]FORTK.Collaborative annotation for reliable natural language processing:Technical and sociological aspects[M].John Wiley &Sons,2016. [10]PICORAL A,STAPLES S,REPPEN R.Automated annotation of learner English:An evaluation of software tools[J].International Journal of Learner Corpus Research,2021,7(1):17-52. [11]ZHENG H,LI L,DAI D,et al.Leveraging word-formationknowledge for Chinese word sense disambiguation[C]//Findings of the Association for Computational Linguistics:EMNLP 2021.2021:918-923. [12]ZHENG H,LI L,DAI D,et al.Leveraging word-formationknowledge for Chinese word sense disambiguation[C]//Findings of the Association for Computational Linguistics:EMNLP 2021.2021:918-923. [13]LESTER B,AL-RFOU R,CONSTANT N.The power of scale for parameter-efficient prompt tuning[J].arXiv:2104.08691,2021. [14]VAN ZANDVOORT D,WIERSEMA L,HUIBERST,et al.Enhancing Summarization Performance through Transformer-Based Prompt Engineering in Automated Medical Reporting[J].arXiv:2311.13274,2023. [15]AMYEEN R.Prompt-Engineering and Transformer-basedQuestion Generation and Evaluation[J].arXiv:2310.18867,2023. [16]GILARDI F,ALIZADEH M,KUBLI M.ChatGPT outperforms crowd workers for text-annotation tasks[J].Proceedings of the National Academy of Sciences,2023,120(30):e2305016120. [17]GAN L,DU X.Research on Chinese word sense disambigution based on Prompt learning[C]//2022 3rd International Conference on Computer Science and Management Technology(ICCSMT).IEEE,2022:504-507. [18]LIU P,YUAN W,FU J,et al.Pre-train,prompt,and predict:A systematic survey of prompting methods in natural language processing[J].ACM Computing Surveys,2023,55(9):1-35. [19]ZHANG Y,LU W,WU H.Chinese Word Similarity Computation based on Automatically Acquired Knowledge[C]//International Conference on Information System and Management Engineering.SCITEPRESS,2016:48-52. [20]WANG H.Polysemous words:meaning,length,and frequency[J].Stud Chinese Lang,2009,2:120-130. [21]WU Y F,YU S W.The Principles and Methods of Sense Discrimination for Chinese Language Processing [J].Language and Script,2006(2):126-133. [22]LEE D D,PHAM P,LARGMAN Y,et al.Advances in neural information processing systems 22[J].Tech Rep,2009. [23]KOUBAA A.GPT-4 vs. GPT-3.5:A concise showdown[J].Preprints. org,2023,2023030422. [24]EBERTS M,ULGES A.Span-based joint entity and relation extraction with transformer pre-training[J].arXiv:1909.07755,2019. [25]KOUBAAA.GPT-4 vs. GPT-3.5:A concise showdown[J].2023. [26]HABER J,POESIO M.Polysemy-evidence from linguistics,behavioral science,and contextualized language models[J].Computational Linguistics,2024,50(1):351-417. [27]ACHIAM J,ADLER S,AGARWAL S,et al.Gpt-4 technical report[J].arXiv:2303.08774,2023. [28]ZHANG M,LI J.A commentary of GPT-3 in MIT Technology Review 2021[J].Fundamental Research,2021,1(6):831-833. [29]CHANTRAPORNCHAI C,TUNSAKUL A.Information ex-traction tasks based on BERT and SpaCy on tourism domain[J].ECTI Transactions on Computer and Information Technology(ECTI-CIT),2021,15(1):108-122. |
[1] | TU Ji, XIAO Wendong, TU Wenji, LI Lijian. Application of Large Language Models in Medical Education:Current Situation,Challenges and Future [J]. Computer Science, 2025, 52(6A): 240400121-6. |
[2] | LI Bo, MO Xian. Application of Large Language Models in Recommendation System [J]. Computer Science, 2025, 52(6A): 240400097-7. |
[3] | ZOU Rui, YANG Jian, ZHANG Kai. Low-resource Vietnamese Speech Synthesis Based on Phoneme Large Language Model andDiffusion Model [J]. Computer Science, 2025, 52(6A): 240700138-6. |
[4] | ZHOU Lei, SHI Huaifeng, YANG Kai, WANG Rui, LIU Chaofan. Intelligent Prediction of Network Traffic Based on Large Language Model [J]. Computer Science, 2025, 52(6A): 241100058-7. |
[5] | BAI Yuntian, HAO Wenning, JIN Dawei. Study on Open-domain Question Answering Methods Based on Retrieval-augmented Generation [J]. Computer Science, 2025, 52(6A): 240800141-7. |
[6] | ZHANG Le, CHE Chao, LIANG Yan. Hallucinations Proactive Relief in Diabetes Q&A LLM [J]. Computer Science, 2025, 52(6A): 240700182-10. |
[7] | HU Caishun. Study on Named Entity Recognition Algorithms in Audit Domain Based on Large LanguageModels [J]. Computer Science, 2025, 52(6A): 240700190-4. |
[8] | ZHAO Zheyu, WANG Zhongqing, WANG Hongling. Commodity Attribute Classification Method Based on Dual Pre-training [J]. Computer Science, 2025, 52(6A): 240500127-8. |
[9] | GAO Hongkui, MA Ruixiang, BAO Qihao, XIA Shaojie, QU Chongxiao. Research on Hybrid Retrieval-augmented Dual-tower Model [J]. Computer Science, 2025, 52(6): 324-329. |
[10] | CHEN Xuhao, HU Sipeng, LIU Hongchao, LIU Boran, TANG Dan, ZHAO Di. Research on LLM Vector Dot Product Acceleration Based on RISC-V Matrix Instruction Set Extension [J]. Computer Science, 2025, 52(5): 83-90. |
[11] | CONG Yingnan, HAN Linrui, MA Jiayu, ZHU Jinqing. Research on Intelligent Judgment of Criminal Cases Based on Large Language Models [J]. Computer Science, 2025, 52(5): 248-259. |
[12] | ZHU Shucheng, HUO Hongying, WANG Weikang, LIU Ying, LIU Pengyuan. Automatic Optimization and Evaluation of Prompt Fairness Based on Large Language Model Itself [J]. Computer Science, 2025, 52(4): 240-248. |
[13] | SONG Xingnuo, WANG Congyan, CHEN Mingkai. Survey on 3D Scene Reconstruction Techniques in Metaverse [J]. Computer Science, 2025, 52(3): 17-32. |
[14] | CHENG Dawei, WU Jiaxuan, LI Jiangtong, DING Zhijun, JIANG Changjun. Study on Evaluation Framework of Large Language Model’s Financial Scenario Capability [J]. Computer Science, 2025, 52(3): 239-247. |
[15] | HUANG Xueqin, ZHANG Sheng, ZHU Xianqiang, ZHANG Qianzhen, ZHU Cheng. Generative Task Network:New Paradigm for Autonomic Task Planning and Execution Based on LLM [J]. Computer Science, 2025, 52(3): 248-259. |
|