Computer Science ›› 2025, Vol. 52 ›› Issue (8): 259-267.doi: 10.11896/jsjkx.241000055
• Artificial Intelligence • Previous Articles Next Articles
LI Junwen1, SONG Yuqiu2, ZHANG Weiyan2, RUAN Tong2, LIU Jingping2, ZHU Yan1
CLC Number:
[1]HUANG Z,YU P,ALLAN J.Improving cross-lingual information retrieval on low-resource languages via optimal transport distillation[C]//Proceedings of the Sixteenth ACM Internatio-nal Conference on Web Search and Data Mining.2023:1048-1056. [2]ZHANG S,LIANG Y,GONG M,et al.Modeling sequential sentence relation to improve cross-lingual dense retrieval[J].arXiv:2302.01626,2023. [3]LI Z J,LI S H.Survey on Web-based Question Answering [J].Computer Science,2017,44(6):1-7,42. [4]YU Y Y,CHAO W H,HE Y Y,et al.Cross-language Know-ledge Linkage Based on Bilingual Topic Model and Bilingual Word Vectors [J].Computer Science,2019,46(1):238-244. [5]WANG Y,REN R,LI J,et al.REAR:A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering[J].arXiv:2402.17497,2024. [6]ZHUANG H,QIN Z,HUI K,et al.Beyond yes and no:Improving zero-shot llm rankers via scoring fine-grained relevance labels[J].arXiv:2310.14122,2023. [7]SUN W,YAN L,MA X,et al.Is ChatGPT good at search? investigating large language models as re-ranking agents[J].ar-Xiv:2304.09542,2023. [8]QIN Z,JAGERMAN R,HUI K,et al.Large language modelsare effective text rankers with pairwise ranking prompting[J].arXiv:2306.17563,2023. [9]ACHIAM J,ADLER S,AGARWAL S,et al.Gpt-4 technical report[J].arXiv:2303.08774,2023. [10]TOUVRON H,LAVRIL T,IZACARD G,et al.Llama:Openand efficient foundation language models[J].arXiv:2302.13971,2023. [11]TOUVRON H,MARTIN L,STONE K,et al.Llama 2:Open foundation and fine-tuned chat models[J].arXiv:2307.09288,2023. [12]LIU J P,SU J S,HUANG D G.Incorporating Language-specific Adapter into Multilingual Neural Machine Translation[J].Computer Science,2022,49(1):17-23. [13]ELAYEB B,ROMDHANE W B,SAOUD N B B.Towards a new possibilistic query translation tool for cross-language information retrieval[J].Multimedia Tools and Applications,2018,77:2423-2465. [14]AZARBONYAD H,SHAKERY A,FAILI H.A learning torank approach for cross-language information retrieval exploiting multiple translation resources[J].Natural Language Engineering,2019,25(3):363-384. [15]KISHIDA K,KANDO N.Two-stage refinement of query translation in a pivot language approach to cross-lingual information retrieval:An experiment at CLEF 2003[C]//Workshop of the Cross-Language Evaluation Forum for European Languages.Berlin:Springer,2003:253-262. [16]TASHU T M,KONTOS E R,SABATELLI M,et al.Mapping Transformer Leveraged Embeddings for Cross-Lingual Document Representation[J].arXiv:2401.06583,2024. [17]LIN J A,BAO C Z,DONG J F,et al.Multilingual Text-Video Cross-Modal Retrieval Model via Multilingual-Visual Common Space Learning[J].Journal of Computer Science,2024,47(9):2195-2210. [18]ZOU A,HAO W N,JIN D W,et al.Study on Text Retrieval Based on Pre-training and Deep Hash [J].Computer Science,2021,48(11):300-306. [19]QIU X,WANG Y,SHI J,et al.Cross-Lingual Transfer for Na-tural Language Inference via Multilingual Prompt Translator[J].arXiv:2403.12407,2024. [20]CONNEAU A,KHANDELWAL K,GOYAL N,et al.Unsupervised cross-lingual representation learning at scale[J].arXiv:1911.02116,2019. [21]LUO F,WANG W,LIU J,et al.VECO:Variable and flexible cross-lingual pre-training for language understanding and gene-ration[J].arXiv:2010.16046,2020. [22]LITSCHKO R,VULIĆ I,PONZETTO S P,et al.On cross-lingual retrieval with multilingual text encoders[J].Information Retrieval Journal,2022,25(2):149-183. [23]YANG E,NAIR S,CHANDRADEVAN R,et al.C3:Continued pretraining with contrastive weak supervision for cross language ad-hoc retrieval[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.2022:2507-2512. [24]ZHENG H,ZHANG X,CHI Z,et al.Cross-lingual phrase retrieval[J].arXiv:2204.08887,2022. [25]MA X,ZHANG X,PRADEEP R,et al.Zero-shot listwise document reranking with a large language model[J].arXiv:2305.02156,2023. [26]CHEN X T,YE J J,ZU C,et al.Robustness of GPT Large Language Models on Natural Language Processing Tasks [J].Journal of Computer Research and Development,2024,61(5):1128-1142. [27]IZACARD G,CARON M,HOSSEINI L,et al.Unsuperviseddense information retrieval with contrastive learning[J].arXiv:2112.09118,2021. [28]QU Y,DING Y,LIU J,et al.RocketQA:An optimized training approach to dense passage retrieval for open-domain question answering[J].arXiv:2010.08191,2020. [29]XIONG L,XIONG C,LI Y,et al.Approximate nearest neighbor negative contrastive learning for dense text retrieval[J].arXiv:2007.00808,2020. [30]HUANG Z H,YANG S Z,LIN W,et al.Knowledge Distillation:A Survey [J].Journal of Computer Science,2022,45(3):624-653. [31]JAWAHAR G,SAGOT B,SEDDAH D.What does BERT learn about the structure of language?[C]//57th Annual Meeting of the Association for Computational Linguistics.2019. [32]SUN S,DUH K.CLIRMatrix:A massively large collection ofbilingual and multilingual datasets for Cross-Lingual Information Retrieval[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP).2020:4160-4170. [33]PENEDO G,MALARTIC Q,HESSLOW D,et al.The RefinedWeb dataset for Falcon LLM:outperforming curated corpora with web data,and web data only[J].arXiv:2306.01116,2023. [34]ZHENG L,CHIANG W L,SHENG Y,et al.Judging LLM-as-a-judge with MT-bench and chatbot arena[J].arXiv:2306.05685,2024. [35]LIU J,SONG Y,XUE K,et al.Fl-tuning:Layer tuning for feed-forward network in transformer[J].arXiv:2206.15312,2022. |
[1] | ZHAO Shengyu, PENG Jiaheng, WANG Wei, HUANG Fan. OpenRank Dynamics:Influence Evaluation and Dynamic Propagation Models for Open SourceEcosystems [J]. Computer Science, 2025, 52(8): 62-70. |
[2] | YANG Jian, SUN Liu, ZHANG Lifang. Survey on Data Processing and Data Augmentation in Low-resource Language Automatic Speech Recognition [J]. Computer Science, 2025, 52(8): 86-99. |
[3] | WANG Pei, YANG Xihong, GUAN Renxiang, ZHU En. Deep Graph Contrastive Clustering Algorithm Based on Dynamic Threshold Pseudo-label Selection [J]. Computer Science, 2025, 52(8): 100-108. |
[4] | CHEN Genshen, LIU Gang, DONG Yang, FAN Wenyao, YI Qiang, JIANG Zixin. Efficient Indexing Method for Massive 3D Geological Block Models Based on Inverted-B+ Tree [J]. Computer Science, 2025, 52(8): 146-153. |
[5] | ZHANG Shiju, GUO Chaoyang, WU Chengliang, WU Lingjun, YANG Fengyu. Text Clustering Approach Based on Key Semantic Driven and Contrastive Learning [J]. Computer Science, 2025, 52(8): 171-179. |
[6] | DING Zhengze, NIE Rencan, LI Jintao, SU Huaping, XU Hang. MTFuse:An Infrared and Visible Image Fusion Network Based on Mamba and Transformer [J]. Computer Science, 2025, 52(8): 188-194. |
[7] | YUAN Youwen, JIN Shuo, ZHAO Xi. IBSNet:A Neural Implicit Field for IBS Prediction in Single-view Scanned Point Cloud [J]. Computer Science, 2025, 52(8): 195-203. |
[8] | LIU Huayong, XU Minghui. Hash Image Retrieval Based on Mixed Attention and Polarization Asymmetric Loss [J]. Computer Science, 2025, 52(8): 204-213. |
[9] | LIU Jian, YAO Renyuan, GAO Nan, LIANG Ronghua, CHEN Peng. VSRI:Visual Semantic Relational Interactor for Image Caption [J]. Computer Science, 2025, 52(8): 222-231. |
[10] | WANG Fengling, WEI Aimin, PANG Xiongwen, LI Zhi, XIE Jingming. Video Super-resolution Model Based on Implicit Alignment [J]. Computer Science, 2025, 52(8): 232-239. |
[11] | WANG Jia, XIA Ying, FENG Jiangfan. Few-shot Video Action Recognition Based on Two-stage Spatio-Temporal Alignment [J]. Computer Science, 2025, 52(8): 251-258. |
[12] | ZHANG Yuan, ZHANG Shengjie, LIU Lilong, QIAN Shengsheng. Research on Continual Social Event Classification Based on Continual Event Knowledge Network [J]. Computer Science, 2025, 52(8): 268-276. |
[13] | LIU Le, XIAO Rong, YANG Xiao. Application of Decoupled Knowledge Distillation Method in Document-level RelationExtraction [J]. Computer Science, 2025, 52(8): 277-287. |
[14] | CHEN Ge, WANG Zhongqing. Cross-domain Aspect-based Sentiment Analysis Based on Pre-training Model with Data Augmentation [J]. Computer Science, 2025, 52(8): 300-307. |
[15] | WANG Dongsheng. Multi-defendant Legal Judgment Prediction with Multi-turn LLM and Criminal Knowledge Graph [J]. Computer Science, 2025, 52(8): 308-316. |
|