Computer Science ›› 2025, Vol. 52 ›› Issue (8): 100-108.doi: 10.11896/jsjkx.240700112
• Database & Big Data ( Data Science • Previous Articles Next Articles
WANG Pei, YANG Xihong, GUAN Renxiang, ZHU En
CLC Number:
[1]WU Z,PAN S,CHEN F,et al.A comprehensive survey ongraph neural networks[J].IEEE Transactions on Neural Networks and Learning Systems,2020,32(1):4-24. [2]GUPTA A,MATTA P,PANT B.Graph neural network:Current state of Art,challenges and applications[J].Materials Today:Proceedings,2021,46:10927-10932. [3]TSITSULIN A,PALOWITCH J,PEROZZI B,et al.Graph clustering with graph neural networks[J].Journal of Machine Learning Research,2023,24(127):1-21. [4]TU W,GUAN R,ZHOU S,et al.Attribute-missing graph clustering network[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2024:15392-15401. [5]DIKE H U,ZHOU Y,DEVEERASETTY K K,et al.Unsupervised learning based on artificial neural network:A review[C]//2018 IEEE International Conference on Cyborg and Bionic Systems(CBS).IEEE,2018:322-327. [6]LIU Y,TU W,ZHOU S,et al.Deep graph clustering via dual correlation reduction[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:7603-7611. [7]LI J,GUAN R,HAN Y,et al.Superpixel-Based Dual-Neighborhood Contrastive Graph Autoencoder for Deep Subspace Clustering of Hyperspectral Image[C]//International Conference on Intelligent Computing.Springer,2024:181-192. [8]TSITSULIN A,PALOWITCH J,PEROZZI B,et al.Graph clustering with graph neural networks[J].Journal of Machine Learning Research,2023,24(127):1-21. [9]WANG C,PAN S,HU R,et al.Attributed graph clustering:a deep attentional embedding approach[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.2019:3670-3676. [10]XIA W,WANG Q,GAO Q,et al.Self-consistent contrastive attributed graph clustering with pseudo-label prompt[J].IEEE Transactions on Multimedia,2022,25:6665-6677. [11]WANG X,WU Z,LIAN L,et al.Debiased learning from naturally imbalanced pseudo-labels[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:14647-14657. [12]ARAZO E,ORTEGO D,ALBERT P,et al.Pseudo-labeling and confirmation bias in deep semi-supervised learning[C]//2020 International Joint Conference on Neural Networks(IJCNN).IEEE,2020:1-8. [13]GUAN R,LI Z,LI X,et al.Pixel-superpixel contrastive learning and pseudo-label correction for hyperspectral image clustering[C]//ICASSP 2024-2024 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2024:6795-6799. [14]YANG X,LIU Y,ZHOU S,et al.Cluster-guided ContrastiveGraph Clustering Network[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:10834-10842. [15]XU D,CHENG W,LUO D,et al.Spatio-Temporal Attentive RNN for Node Classification in Temporal Attributed Graphs[C]//IJCAI.2019:3947-3953. [16]KIPF T N,WELLING M.Variational Graph Auto-Encoders[J].Stat,2016,1050:21. [17]WANG C,PAN S,HU R,et al.Attributed Graph Clustering:A Deep Attentional Embedding Approach[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.2019:3670-3676. [18]VELICKOVIC P,FEDUS W,HAMILTON W L,et al.DeepGraph Infomax[J].Stat,2018,1050:21. [19]ZHU Y,XU Y,YU F,et al.Deep graph contrastive representation learning[J].arXiv:2006.04131,2020. [20]QIU J,CHEN Q,DONG Y,et al.Gcc:Graph contrastive coding for graph neural network pre-training[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:1150-1160. [21]WU Z,XIONG Y,YU S X,et al.Unsupervised feature learning via non-parametric instance discrimination[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:3733-3742. [22]CHEN X,FAN H,GIRSHICK R,et al.Improved baselines with momentum contrastive learning[J].arXiv:2003.04297,2020. [23]YOU Y,CHEN T,SUI Y,et al.Graph contrastive learning with augmentations[J].Advances in Neural Information Processing Systems,2020,33:5812-5823. [24]GUAN R,LI Z,TU W,et al.Contrastive multiview subspace clustering of hyperspectral images based on graph convolutional networks[J].IEEE Transactions on Geoscience and Remote Sensing,2024,62:1-14. [25]YANG X,TAN C,LIU Y,et al.Convert:Contrastive graphclustering with reliable augmentation[C]//Proceedings of the 31st ACM International Conference on Multimedia.2023:319-327. [26]CUI G,ZHOU J,YANG C,et al.Adaptive graph encoder for attributed graph embedding[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:976-985. [27]LIU Y,TU W,ZHOU S,et al.Deep Graph Clustering via Dual Correlation Reduction[C]//Proceedings of the AAAI Confe-rence on Artificial Intelligence.2022:7603-7611. [28]YANG X,LIU Y,ZHOU S,et al.Cluster-guided ContrastiveGraph Clustering Network[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:10834-10842. [29]HASSANI K,KHASAHMADI A H.Contrastive Multi-view Representation Learning on Graphs[C]//International Confe-rence on Machine Learning.PMLR,2020:4116-4126. [30]XIE J,GIRSHICK R,FARHADI A.Unsupervised Deep Embedding for Clustering Analysis[C]//International Conference on Machine Learning.PMLR,2016:478-487. [31]YANG B,FU X,SIDIROPOULOS N D,et al.Towards K-means-friendly Spaces:Simultaneous Deep Learning and Clustering[C]//International Conference on Machine Learning.PMLR,2017:3861-3870. [32]WANG C,PAN S,LONG G,et al.Mgae:Marginalized Graph Autoencoder for Graph Clustering[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.2017:889-898. [33]PAN S,HU R,FUNG S,et al.Learning Graph Embedding with Adversarial Training Methods[J].IEEE Transactions on Cybernetics,2019,50(6):2475-2487. [34]LI X,ZHANG H,ZHANG R.Adaptive Graph Auto-encoder for General Data Clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,44(12):9725-9732. [35]ZHU Y,XU Y,YU F,et al.Graph Contrastive Learning with Adaptive Augmentation[C]//Proceedings of the Web Confe-rence 2021.2021:2069-2080. [36]JIN W,LIU X,ZHAO X,et al.Automated Self-SupervisedLearning for Graphs[J].arXiv:2106.05470,2021. [37]LI X,WU W,ZHANG B,et al.Multi-scale Graph Clustering Network[J].Information Sciences,2024,678:121023. |
[1] | DING Xinyu, KONG Bing, CHEN Hongmei, BAO Chongming, ZHOU Lihua. Path-masked Autoencoder Guiding Unsupervised Attribute Graph Node Clustering [J]. Computer Science, 2025, 52(1): 160-169. |
[2] | DAI Chaofan, DING Huahua. Domain-adaptive Entity Resolution Algorithm Based on Semi-supervised Learning [J]. Computer Science, 2024, 51(9): 214-222. |
[3] | XIN Bo, DING Zhijun. Interpretable Credit Evaluation Model for Delayed Label Scenarios [J]. Computer Science, 2024, 51(8): 45-55. |
[4] | TANG Ruiqi, XIAO Ting, CHI Ziqiu, WANG Zhe. Few-shot Image Classification Based on Pseudo-label Dependence Enhancement and NoiseInterferenceReduction [J]. Computer Science, 2024, 51(8): 152-159. |
[5] | YANG Xihong, ZHENG Qun, ZHANG Jiaxin, WANG Pei, ZHU En. Feature Interpolation Based Deep Graph Contrastive Clustering Algorithm [J]. Computer Science, 2024, 51(11): 157-165. |
[6] | LI Chunjiang, YIN Shaoping, CHI Haotian, YANG Jing, GENG Haijun. DDoS Attack Detection Model Based on Statistics and Ensemble Autoencoders in SDN [J]. Computer Science, 2024, 51(11): 389-399. |
[7] | JING Yeyiran, YU Zeng, SHI Yunxiao, LI Tianrui. Review of Unsupervised Domain Adaptive Person Re-identification Based on Pseudo-labels [J]. Computer Science, 2024, 51(1): 72-83. |
[8] | WANG Qingyu, WANG Hairui, ZHU Guifu, MENG Shunjian. Study on SQL Injection Detection Based on FlexUDA Model [J]. Computer Science, 2023, 50(6A): 220600172-6. |
[9] | CAI Shaotian, CHEN Xiaojun, CHEN Longteng, QIU Liping. Stratified Pseudo-label Based Image Clustering [J]. Computer Science, 2023, 50(6): 225-235. |
[10] | SONG Xin,ZHU Zong-liang,GAO Yin-ping,CHANG Dao-fang. Vessel AIS Trajectory Online Compression Algorithm Combining Dynamic Thresholding and Global Optimization [J]. Computer Science, 2019, 46(7): 333-338. |
[11] | ZHU De-jian, BAI Guang-wei, CAI Yan-wei, REN Dong and SHEN Hang. Energy-aware Management of Virtual Machines in Data Center [J]. Computer Science, 2017, 44(10): 19-25. |
[12] | CAO Yang, YUAN Xin-pan and LONG Jun. Dynamic Filtering Algorithm of Connected Bit Maximum Likelihood Minwise Hash [J]. Computer Science, 2016, 43(Z6): 410-412. |
[13] | CHEN Shuang-ye and WANG Shan-xi. Moving Object Tracking Based on Five Frame Difference and Improved Meanshift Algorithm [J]. Computer Science, 2016, 43(Z6): 203-206. |
[14] | YANG Fang, TENG Gui-fa and TIAN Xue-dong. Dynamic Multi-threshold Binarization Method for Visual Music Images [J]. Computer Science, 2016, 43(1): 310-314. |
[15] | XIE Fei, GONG Sheng-rong, LIU Chun-ping and JI Yi. Human Action Recognition by Visual Word Based on Local and Global Features [J]. Computer Science, 2015, 42(11): 293-298. |
|