Computer Science ›› 2025, Vol. 52 ›› Issue (10): 70-78.doi: 10.11896/jsjkx.241000088
• Database & Big Data & Data Science • Previous Articles Next Articles
LIU Yuting, GU Jingjing, ZHOU Qiang
CLC Number:
[1]GUO S,LIN Y,GONG L,et al.Self-supervised spatial-temporal bottleneck attentive network for efficient long-term traffic forecasting[C]//2023 IEEE 39th International Conference on Data Engineering (ICDE).IEEE,2023:1585-1596. [2]HAN J,ZHANG W,LIU H,et al.BigST:Linear ComplexitySpatio-Temporal Graph Neural Network for Traffic Forecasting on Large-Scale Road Networks[C]//Proceedings of the VLDB Endowment.2024:1081-1090. [3]PENG H,DU B,LIU M,et al.Dynamic graph convolutional network for long-term traffic flow prediction with reinforcement learning[J].Information Sciences,2021,578:401-416. [4]ZHENG C,FAN X,WANG C,et al.Gman:A graph multi-at-tention network for traffic prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:1234-1241. [5]ZHENG Z,GU J,ZHOU Q,et al.Prediction in Long-term Evolution:Exploiting the Interaction Between Urban Crowd Flow Variation and POI Transition Patterns[C]//2023 IEEE International Conference on Data Mining (ICDM).IEEE,2023:1559-1564. [6]GU J,ZHOU Q,YANG J,et al.Exploiting interpretablepat-terns for flow prediction in dockless bike sharing systems[J].IEEE Transactions on Knowledge and Data Engineering,2020,34(2):640-652. [7]YU B,YIN H,ZHU Z.Spatio-temporal graph convolutional networks:a deep learning framework for traffic forecasting[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence.2018:3634-3640. [8]SONG C,LIN Y,GUO S,et al.Spatial-temporal synchronous graph convolutional networks:A new framework for spatial-temporal network data forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:914-921. [9]WU Z,PAN S,LONG G,et al.Graph wavenet for deep spatial-temporal graph modeling[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.2019:1907-1913. [10]BAI L,YAO L,LI C,et al.Adaptive graph convolutional recurrent network for traffic forecasting[J].Advances in Neural Information Processing Systems,2020,33:17804-17815. [11]GUO S,LIN Y,FENG N,et al.Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:922-929. [12]MAGLIACANE S,VAN OMMEN T,CLAASSEN T,et al.Domain adaptation by using causal inference to predict invariant conditional distributions[C]//Advances in Neural Information Processing Systems.2018. [13]ZHANG S,YAO D,ZHAO Z,et al.Causerec:Counterfactualuser sequence synthesis for sequential recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.2021:367-377. [14]ROBERTSM E,STEWART B M,NIELSEN R A.Adjusting for confounding with text matching[J].American Journal of Political Science,2020,64(4):887-903. [15]ZHANG D,ZHANG H,TANG J,et al.Causal intervention for weakly-supervised semantic segmentation[J].Advances in Neural Information Processing Systems,2020,33:655-666. [16]NIU Y,TANG K,ZHANG H,et al.Counterfactual vqa:Acause-effect look at language bias[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:12700-12710. [17]GE C,SONG S,HUANG G.Causal intervention for human trajectory prediction with cross attention mechanism[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2023:658-666. [18]PEARL J.Models,reasoning and inference[M].Cambridge:Cambridge University Press,2000,19(2):3. [19]PEARL J.Causality[M].Cambridge University Press,2009. [20]BLEID M,KUCUKELBIR A,MCAULIFFE J D.Variational inference:A review for statisticians[J].Journal of the American Statistical Association,2017,112(518):859-877. [21]DIAOM Z,BALASUBRAMANIAN K,CHEWI S,et al.For-ward-backward Gaussian variational inference via JKO in the Bures-Wasserstein space[C]//International Conference on Machine Learning.PMLR,2023:7960-7991. [22]RUDNERT G J,CHEN Z,TEH Y W,et al.Tractable function-space variational inference in bayesian neural networks[J].Advances in Neural Information Processing Systems,2022,35:22686-22698. [23]BURDA Y,GROSSE R,SALAKHUTDINOV R.Importanceweighted autoencoders[J].arXiv:1509.00519,2015. [24]HOFFMANM D,JOHNSON M J.Elbo surgery:yet anotherway to carve up the variational evidence lower bound[C]//Workshop in Advances in Approximate Bayesian Inference,NIPS.2016. [25]YANG C,WU Q,WEN Q,et al.Towards out-of-distribution sequential event prediction:A causal treatment[J].Advances in neural information processing systems,2022,35:22656-22670. [26]ZHOU Z,HUANG Q,YANG K,et al.Maintaining the status quo:Capturing invariant relations for ood spatiotemporal learning[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2023:3603-3614. |
[1] | WANG Yongxin, XU Xin, ZHU Hongbin. Survey of Tabular Data Generation Techniques [J]. Computer Science, 2025, 52(10): 3-12. |
[2] | LI Ao, BAI Xueru, JIANG Jiali, QIAO Ye. Group Cross Adversarial Application in Stock Price Prediction [J]. Computer Science, 2025, 52(10): 22-32. |
[3] | LEI Ershuai, YU Suping, FAN Hong, XU Wujun. Spatial-Temporal Propagation Graph Neural Network for Traffic Prediction [J]. Computer Science, 2025, 52(10): 90-97. |
[4] | ZHAO Chen, PENG Jian, HUANG Junhao. Spatial-Temporal Joint Mapping for Skeleton-based Action Recognition [J]. Computer Science, 2025, 52(10): 106-114. |
[5] | WANG Liuyi, ZHOU Chun, ZENG Wenqiang, HE Xingxing, MENG Hua. High-frequency Feature Masking-based Adversarial Attack Algorithm [J]. Computer Science, 2025, 52(10): 374-381. |
[6] | LI Siqi, YU Kun, CHEN Yuhao. Prediction of Resource Usage on High-performance Computing Platforms Based on ARIMAand LSTM [J]. Computer Science, 2025, 52(9): 178-185. |
[7] | WANG Limei, HAN Linrui, DU Zuwei, ZHENG Ri, SHI Jianzhong, LIU Yiqun. Privacy Policy Compliance Detection Method for Mobile Application Based on Large LanguageModel [J]. Computer Science, 2025, 52(8): 1-16. |
[8] | GUO Husheng, ZHANG Xufei, SUN Yujie, WANG Wenjian. Continuously Evolution Streaming Graph Neural Network [J]. Computer Science, 2025, 52(8): 118-126. |
[9] | YU Shihai, HU Bin. Bio-inspired Neural Network with Visual Invariant Response to Moving Pedestrian [J]. Computer Science, 2025, 52(7): 170-188. |
[10] | LI Bo, MO Xian. Application of Large Language Models in Recommendation System [J]. Computer Science, 2025, 52(6A): 240400097-7. |
[11] | SHI Xincheng, WANG Baohui, YU Litao, DU Hui. Study on Segmentation Algorithm of Lower Limb Bone Anatomical Structure Based on 3D CTImages [J]. Computer Science, 2025, 52(6A): 240500119-9. |
[12] | CHEN Shijia, YE Jianyuan, GONG Xuan, ZENG Kang, NI Pengcheng. Aircraft Landing Gear Safety Pin Detection Algorithm Based on Improved YOlOv5s [J]. Computer Science, 2025, 52(6A): 240400189-7. |
[13] | LIU Bingzhi, CAO Yin, ZHOU Yi. Distillation Method for Text-to-Audio Generation Based on Balanced SNR-aware [J]. Computer Science, 2025, 52(6A): 240900125-5. |
[14] | ZHANG Hang, WEI Shoulin, YIN Jibin. TalentDepth:A Monocular Depth Estimation Model for Complex Weather Scenarios Based onMultiscale Attention Mechanism [J]. Computer Science, 2025, 52(6A): 240900126-7. |
[15] | CHENG Yan, HE Huijuan, CHEN Yanying, YAO Nannan, LIN Guobo. Study on interpretable Shallow Class Activation Mapping Algorithm Based on Spatial Weights andInter Layer Correlation [J]. Computer Science, 2025, 52(6A): 240500140-7. |
|