Computer Science ›› 2025, Vol. 52 ›› Issue (6A): 240500119-9.doi: 10.11896/jsjkx.240500119
• Intelligent Medical Engineering • Previous Articles Next Articles
SHI Xincheng, WANG Baohui, YU Litao, DU Hui
CLC Number:
[1]OLIVEIRA D A,FEITOSA R Q,CORREIA M M.Segmentation of liver,its vessels and lesions from CT images for surgical planning [J].Biomedical Engineering Online,2011,10:30. [2]SEO K S,KIM H B,PARK T,et al.Automatic liver segmentation of contrast enhanced CT images based on histogram processing [C]//WANG L,CHEN K,ONG Y S.Advances in Natural Computation.Berlin:Springer,2005:1027-1030. [3]KENJI S,RYAN K,MARK L,et al.Computer-Aided Measurement of Liver Volumesin CT by Means of Geodesic Active Contour Segmentation Coupled with Level-Set Algorithms [J].Medical Physics,2010,37:2159-2166. [4]RONNEBERGER O,FISCHER P,BROX T.U-Net:Convolu-tional networks for biomedical image segmentation [C]//Springer International Publishing,2015:234-241. [5]MILLETARI F,NAVAB N,AHMADI S A.V-Net:Fully convolutional neural networks for volumetric medical image segmentation [C]//2016 4th International Conference on 3D Vision(3DV).Stanford,25-28 October 2016:565-571. [6]ZHOU Z,RAHMAN SIDDIQUEE M M,TAJBAKHSH N,et al.UNet++:A nested U-Net architecture for medical image segmentation [C]//Stoyanov D,et al.Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support.Springer,2018:3-11. [7]OKTAY O,SCHLEMPER J,FOLGOC L L,et al.Attention U-Net:Learning where to look for the pancreas [J].arXiv:1804.03999,2018. [8]ALOM M Z,YAKOPCIC C,TAHA T M,et al.Nuclei segmentation with recurrent residual convolutional neural networks based U-Net(R2U-Net) [C]//NAECON 2018-IEEE National Aerospace and Electronics Conference.Dayton.OH,2018:228-233. [9]CHEN H,DOU Q,YU L,et al.VoxResNet:Deep voxelwise residual networks for brain segmentation from 3D MR images [J].NeuroImage,2018,170:446-455. [10]SCHLEMPER J,OKTAY O,SCHAAP M,et al.Attention gated networks:Learning to leverage salient regions in medical images [J].Medical Image Analysis,2019,53:197-207. [11]HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4700-4708. [12]LITJENS G,TOTH R,VAN DE VEN W,et al.Evaluation of prostate segmentation algorithms for MRI:The PROMISE12 challenge [J].Medical Image Analysis,2014,18(2):359-373. [13]WANG H,LI T,ZHUANG Z,et al.Early stopping for deep image prior [J].arXiv:1901.09335,2021. [14]WANG C,HE Y,LIU Y,et al.ScleraSegNet:An improved U-net model with attention for accurate sclera segmentation [C]//Proceedings of the International Conference on Biometrics,2019:1-8. [15]CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation [C]//Ferrari V,Hebert M,Sminchisescu C,Weiss Y.Computer Vision—ECCV 2018.Cham:Springer,2018:833-851. [16]JIN Q G,MENG Z P,PHAM T D,et al.DUNet:A Deformable Network for Retinal Vessel Segmentation [J].Knowledge-Based Systems,2019,178:149-162. [17]ZHANG Z Z,GAO J Y,ZHAO D.MIFNet:A Gastric Cancer Pathology Image Segmentation Method Based on Multi-Scale Input and Feature Fusion [J].Journal of Computer Applications,2019,39(z2):107-113. [18]JIN Q G,MENG Z P,PHAM T D,et al.DUNet:A Deformable Network for Retinal Vessel Segmentation [J].Knowledge-Based Systems,2019,178:149-162. [19]DAI J,QI H,XIONG Y,et al.Deformable ConvolutionalNetworks [C]//Proceedings of the International Conference on Computer Vision.2017:764-773. |
[1] | WANG Rong , ZOU Shuping, HAO Pengfei, GUO Jiawei, SHU Peng. Sand Dust Image Enhancement Method Based on Multi-cascaded Attention Interaction [J]. Computer Science, 2025, 52(6A): 240800048-7. |
[2] | JIN Lu, LIU Mingkun, ZHANG Chunhong, CHEN Kefei, LUO Yaqiong, LI Bo. Pedestrian Re-identification Based on Spatial Transformation and Multi-scale Feature Fusion [J]. Computer Science, 2025, 52(6A): 240800156-7. |
[3] | WANG Baohui, GAO Zhan, XU Lin, TAN Yingjie. Research and Implementation of Mine Gas Concentration Prediction Algorithm Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240400188-7. |
[4] | ZHANG Yongyu, GUO Chenjuan, WEI Hanyue. Deep Learning Stock Price Probability Prediction Based on Multi-modal Feature Wavelet Decomposition [J]. Computer Science, 2025, 52(6A): 240600140-11. |
[5] | WANG Jiamin, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, HAO Xu, ZHANG Chao, FU Rongsheng. Review of Concrete Defect Detection Methods Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240900137-12. |
[6] | XU Yutao, TANG Shouguo. Visual Question Answering Integrating Visual Common Sense Features and Gated Counting Module [J]. Computer Science, 2025, 52(6A): 240800086-7. |
[7] | WANG Rui, TANG Zhanjun. Multi-feature Fusion and Ensemble Learning-based Wind Turbine Blade Defect Detection Method [J]. Computer Science, 2025, 52(6A): 240900138-8. |
[8] | LI Mingjie, HU Yi, YI Zhengming. Flame Image Enhancement with Few Samples Based on Style Weight Modulation Technique [J]. Computer Science, 2025, 52(6A): 240500129-7. |
[9] | CHENG Yan, HE Huijuan, CHEN Yanying, YAO Nannan, LIN Guobo. Study on interpretable Shallow Class Activation Mapping Algorithm Based on Spatial Weights andInter Layer Correlation [J]. Computer Science, 2025, 52(6A): 240500140-7. |
[10] | LONG Xiao, HUANG Wei, HU Kai. Bi-MI ViT:Bi-directional Multi-level Interaction Vision Transformer for Lung CT ImageClassification [J]. Computer Science, 2025, 52(6A): 240700183-6. |
[11] | CHEN Xianglong, LI Haijun. LST-ARBunet:An Improved Deep Learning Algorithm for Nodule Segmentation in Lung CT Images [J]. Computer Science, 2025, 52(6A): 240600020-10. |
[12] | LI Weirong, YIN Jibin. FB-TimesNet:An Improved Multimodal Emotion Recognition Method Based on TimesNet [J]. Computer Science, 2025, 52(6A): 240900046-8. |
[13] | SHEN Xinyang, WANG Shanmin, SUN Yubao. Depression Recognition Based on Speech Corpus Alignment and Adaptive Fusion [J]. Computer Science, 2025, 52(6): 219-227. |
[14] | GUO Yecai, HU Xiaowei, MAO Xiangnan. Multi-scale Feature Fusion Residual Denoising Network Based on Cascade [J]. Computer Science, 2025, 52(6): 239-246. |
[15] | ZHANG Xinyan, TANG Zhenchao, LI Yifu, LIU Zhenyu. Two-stage Left Atrial Scar Segmentation Based on Multi-scale Attention and Uncertainty Loss [J]. Computer Science, 2025, 52(6): 264-273. |
|