Computer Science ›› 2025, Vol. 52 ›› Issue (6A): 240500140-7.doi: 10.11896/jsjkx.240500140
• Image Processing & Multimedia Technology • Previous Articles Next Articles
CHENG Yan1, HE Huijuan2, CHEN Yanying2, YAO Nannan2, LIN Guobo2
CLC Number:
[1]CHENG M M,JIANG P T,HAN L H,et al.Deeply Explain CNN via Hierarchical Decomposition[J].arXiv:2201.09205,2022. [2]SUN H,SHI Y L,WANG R.Research on Class ActivationMapping Algorithm from Coarse to Fine Based on Comparative Hierarchical Correlation Propagation [J].Journal of Electronics and Information Science,2023,45(4):1454-1463. [3]ZEILER M D,FERGUS R.Visualizing and understanding convo-lutional networks[C]//13th European Conference on ComputerVision.Zurich,Switzerland,2014:818-833. [4]PETSIUK V,DAS A,SAENKO K.Rise:Randomized inputsampling for explanation of black-box models[C]//British Machine Vision Conference(BMVC).2018. [5]AGARWAL C,SCHONFELD D,NGUYEN A.Removing input features via a generative model to explain their attributions to classifier’s decisions[J].arXiv:1910.04256,2019. [6]CHANG C H,CREAGER E,GOLDENBERG A,et al.Explaining image classifiers by counterfactual generation[C]//Proceedings of the 7th International Conference on Learning Representations.New Orleans,USA,2019. [7]SI N W,ZHANG W L,QU D,et al.A Review of Convolutional Neural Network Representation Visualization Research [J].Journal of Automation,2022,48(8):1890-1920. [8]BAEHRENS D,SCHROETER T,HARMELING S,Kawanabe M,Hansen K,Müller K R.How to explain individual classification decisions.[J] Journal of Machine Learning Research,2010,11(61):1803-1831. [9]SIMONYAN K,VEDALDI A,ZISSERMAN A.Deep insideconvolutional networks:Visualising image classification models and saliency maps[J].arXiv:1312.6034,2013. [10]CHENG L,FANG P,LIANG Y,et al.TSGB:Target-Selective Gradient Backprop for Probing CNN Visual Saliency[J].IEEE transactions on image processing:a publication of the IEEE Signal Processing Society,2022,31:2529-2540. [11]GU J,YANG Y,TRESP V.Understanding individual decisions of cnns via contrastive backpropagation[C]//Proceedings of the 14th Asian Conference on Computer Vision.Perth,Australia,2018:119-134. [12]BACH S.Layer-Wise Relevance Propagation for Deep NeuralNetwork Architectures[C]//ICISA.Singapore:Springer,2016:913-922. [13]ZHOU B L,KHOSLA A,LAPEDRIZA A,et al.Learning deep features for discriminative localization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016. [14]SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-cam:Visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Confe-rence on Computer Vision.2017. [15]CHATTOPADHAY A,SARKAR A,HOWLADERP,et al.Grad-cam++:Generalized gradient-based visual explanations for deep convolutional networks[C]//2018 IEEE Winter Conference on Applications of Computer Vision(WACV).IEEE,2018:839-847. [16]RAMASWAMY H G.Ablation-cam:Visual explanations fordeep convolutional network via gradient-free localization[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2020:983-991. [17]SMILKOVD,THORAT N,KIM B,et al.SmoothGrad:removing noise by adding noise[J].arXiv:1706.03825,2017. [18]SATTARZADEH S,SUDHAKAR M,PLATANIOTISK N,et al.Integrated grad-cam:Sensitivity-aware visual explanation of deep convolutional networks via integrated gradient-based scoring[C]//2021 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2021).IEEE,2021:1775-1779. [19]LUCAS M,LERMA M,FURST J,et al.RSI-Grad-CAM:Visual explanations from deep networks via Riemann-Stieltjes integratedgradient-based localization[C]//International Symposium on Visual Computing.Cham:Springer International Publishing,2022:262-274. [20]FU R,HU Q,DONG X,et al.Axiom-based Grad-CAM:Towards Accurate Visualization and Explanation of CNNs(BMVC2020 Oral)[J].arXiv:2008.02312,2020. [21]WANG H F,WANG Z F,DU M N,et al.Score-cam:Score-weighted visual explanations for convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,Workshop on Fair,Data Efficient and Trusted Computer Vision.2020. [22]ZHANG Q,RAO L,YANG Y.Group-cam:Group score-weighted visual explanations for deep convolutional networks[J].ar-Xiv:2103.13859,2021. [23]FENG Z,JI H,DAKOVIC M,et al.Cluster-CAM:Cluster-Weighted Visual Interpretation of CNNs’ Decision in Image Classification[J].arXiv:2302.01642,2023. [24]JIANG P T,ZHANG C B,HOU Q,et al.LayerCAM:Exploring Hierarchical Class Activation Maps for Localization[J].IEEE Transactions on Image Processing,2021,30:5875-5888. [25]LEE J R,KIM S,PARK I,EO T,et al.Relevance-CAM:Your Model Already Knows Where to Look[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR 2021).Nashville,TN,USA,2021:14939-14948. [26]GU J,YANG Y,TRESP V.Understanding individual decisions of cnns via contrastive backpropagation[C]//Proceedings of the 14th Asian Conference on Computer Vision.Perth,Australia.2018:119-134. [27]RUSSAKOVSKY O,DENG J,SU H,et al.Imagenet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252. [28]ADEBAYO J,GILMER J,MUELLY M,et al.Sanity checks for saliency maps[C]//Advances in Neural Information Processing Systems.2018:9505-9515. |
[1] | SHI Xincheng, WANG Baohui, YU Litao, DU Hui. Study on Segmentation Algorithm of Lower Limb Bone Anatomical Structure Based on 3D CTImages [J]. Computer Science, 2025, 52(6A): 240500119-9. |
[2] | LONG Xiao, HUANG Wei, HU Kai. Bi-MI ViT:Bi-directional Multi-level Interaction Vision Transformer for Lung CT ImageClassification [J]. Computer Science, 2025, 52(6A): 240700183-6. |
[3] | WANG Jiamin, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, HAO Xu, ZHANG Chao, FU Rongsheng. Review of Concrete Defect Detection Methods Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240900137-12. |
[4] | WANG Baohui, GAO Zhan, XU Lin, TAN Yingjie. Research and Implementation of Mine Gas Concentration Prediction Algorithm Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240400188-7. |
[5] | GUO Yecai, HU Xiaowei, MAO Xiangnan. Multi-scale Feature Fusion Residual Denoising Network Based on Cascade [J]. Computer Science, 2025, 52(6): 239-246. |
[6] | WANG Chenyuan, ZHANG Yanmei, YUAN Guan. Class Integration Test Order Generation Approach Fused with Deep Reinforcement Learning andGraph Convolutional Neural Network [J]. Computer Science, 2025, 52(6): 58-65. |
[7] | WEI Xiaohui, GUAN Zeyu, WANG Chenyang, YUE Hengshan, WU Qi. Hardware-Software Co-design Fault-tolerant Strategies for Systolic Array Accelerators [J]. Computer Science, 2025, 52(5): 91-100. |
[8] | PANG Mingyi, WEI Xianglin, ZHANG Yunxiang, WANG Bin, ZHUANG Jianjun. Efficient Adaptive CNN Accelerator for Resource-limited Chips [J]. Computer Science, 2025, 52(4): 94-100. |
[9] | XIONG Qibing, MIAO Qiguang, YANG Tian, YUAN Benzheng, FEI Yangyang. Malicious Code Detection Method Based on Hybrid Quantum Convolutional Neural Network [J]. Computer Science, 2025, 52(3): 385-390. |
[10] | LIU Hui, JI Ke, CHEN Zhenxiang, SUN Runyuan, MA Kun, WU Jun. Malicious Attack Detection in Recommendation Systems Combining Graph Convolutional Neural Networks and Ensemble Methods [J]. Computer Science, 2024, 51(6A): 230700003-9. |
[11] | HUANG Rui, XU Ji. Text Classification Based on Invariant Graph Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230900018-5. |
[12] | SUN Yang, DING Jianwei, ZHANG Qi, WEI Huiwen, TIAN Bowen. Study on Super-resolution Image Reconstruction Using Residual Feature Aggregation NetworkBased on Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600039-6. |
[13] | YUAN Zhen, LIU Jinfeng. Denoising Autoencoders Based on Lossy Compress Coding [J]. Computer Science, 2024, 51(6A): 230400172-7. |
[14] | DAI Yongdong, JIN Yang, DAI Yufan, FU Jing, WANG Maofei, LIU Xi. Study on Intelligent Defect Recognition Algorithm of Aerial Insulator Image [J]. Computer Science, 2024, 51(6A): 230700172-5. |
[15] | LYU Yiming, WANG Jiyang. Iron Ore Image Classification Method Based on Improved Efficientnetv2 [J]. Computer Science, 2024, 51(6A): 230600212-6. |
|