Computer Science ›› 2025, Vol. 52 ›› Issue (10): 423-432.doi: 10.11896/jsjkx.240700202
• Information Security • Previous Articles
XIONG Xi1,2,3, DING Guangzheng1,2,3, WANG Juan1,2,3, ZHANG Shuai4
CLC Number:
[1]HE K,ZHANG X,REN S,et al.Deep Residual Learning forImage Recognition[J].arXiv:1512.03385,2015. [2]DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[J].arXiv:1810.04805,2018. [3]MA P,HALIASSOS A,FERNANDEZ-LOPEZ A,et al.Auto-AVSR:Audio-Visual Speech Recognition with Automatic Labels[C]//2023 IEEE International Conference on Acoustics,Speech and Signal Processing.2023:1-5. [4]SZEGEDY C,ZAREMBA W,SUTSKEVER I,et al.Intriguing properties of neural networks[J].arXiv:1312.6199,2013. [5]GOODFELLOW I J,SHLENS J,SZEGEDY C.Explaining andHarnessing Adversarial Examples[J].arXiv:1412.6572,2014. [6]MOOSAVI-DEZFOOLI S M,FAWZI A,FROSSARD P.DeepFool:A Simple and Accurate Method to Fool Deep Neural Networks[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2016:2574-2582. [7]CHEN P Y,ZHANG H,SHARMA Y,et al.ZOO:Zeroth OrderOptimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models[C]//Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security.ACM,2017:15-26. [8]YUAN X,HE P,ZHU Q,et al.Adversarial Examples:Attacks and Defenses for Deep Learning[J].IEEE Transactions on Neural Networks and Learning Systems,2019,30(9):2805-2824. [9]HOSSEINI H,KANNAN S,ZHANG B,et al.DeceivingGoogle's Perspective API Built for Detecting Toxic Comments[J].arXiv:1702.08138,2017. [10]PAPERNOT N,MCDANIEL P,SWAMI A,et al.Crafting Adversarial Input Sequences for Recurrent Neural Networks[J].arXiv:1604.08275,2016. [11]LIU H,XU Z,ZHANG X,et al.SSPAttack:A Simple and Sweet Paradigm for Black-Box Hard-Label Textual Adversarial Attack[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:13228-13235. [12]ZHAO X,ZHANG L,XU D,et al.Generating Textual Adversaries with Minimal Perturbation[J].arXiv:2211.06571,2022. [13]MAHESHWARY R,MAHESHWARY S,PUDI V.Generating Natural Language Attacks in a Hard Label Black Box Setting[J].arXiv:2012.14956,2020. [14]LI L,MA R,GUO Q,et al.BERT-ATTACK:Adversarial Attack Against BERT Using BERT[J].arXiv:2004.09984,2020. [15]ZHU H,ZHAO Q,WU Y.BeamAttack:Generating High-quality Textual Adversarial Examples through Beam Search and Mixed Semantic Spaces[J].arXiv:2303.07199,2023. [16]YOO J Y,MORRIS J X,LIFLAND E,et al.Searching for aSearch Method:Benchmarking Search Algorithms for Generating NLP Adversarial Examples[J].arXiv:2009.06368,2020. [17]JIN D,JIN Z,ZHOU J T,et al.Is BERT Really Robust?AStrong Baseline for Natural Language Attack on Text Classification and Entailment[C]//National Conference on Artificial Intelligence.2020:123-131. [18]REN S,DENG Y,HE K,et al.Generating Natural Language Adversarial Examples through Probability Weighted Word Saliency[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:1085-1097. [19]ALZANTOT M,SHARMA Y,ELGOHARY A,et al.Generating Natural Language Adversarial Examples[J].arXiv:1804.07998,2018. [20]ZANG Y,QI F,YANG C,et al.Word-level Textual Adversarial Attacking as Combinatorial Optimization[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:6066-6080. [21]CHOI Y,KIM H,LEE J H.TABS:Efficient Textual Adversari-al Attack for Pre-trained NL Code Model Using Semantic Beam Search[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.2022:5490-5498. [22]DONG Z,DONG Q,HAO C.HowNet and Its Computation of Meaning[C]//Proceedings of the 23rd International Conference on Computational Linguistics:Demonstrations.2010:53-56. [23]MILLER G A.WordNet:a lexical database for english[J].Communications of the ACM,1995,38(11):39-41. [24]MRKIĆ N, SÉAGHDHA D Ó,THOMSON B,et al.Counter-fitting Word Vectors to Linguistic Constraints[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2016:142-148. [25]GARG S,RAMAKRISHNAN G.BAE:BERT-based Adversarial Examples for Text Classification[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing.2020:6174-6181. [26]REIMERS N,GUREVYCH I.Sentence-BERT:Sentence Em-beddings using Siamese BERT-Networks[J].arXiv:1908.10084,2019. [27]SOCHER R,PERELYGIN A,WU J,et al.Recursive Deep Mo-dels for Semantic Compositionality Over a Sentiment Treebank[EB/OL].https://aclanthology.org/D13-1170.pdf. [28]PANG B,LEE L.Seeing stars:Exploiting class relationships for sentiment categorization with respect to rating scales[C]//Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics.2005:115-124. [29]ZHANG X,LECUN Y.Text Understanding from Scratch[J].arXiv:1502.01710,2016. [30]MAAS A L,DALY R E,PHAM P T,et al.Learning Word Vectors for Sentiment Analysis[C]//Annual Meeting of the Association for Computational Linguistics.2011. [31]BOWMAN S R,ANGELI G,POTTS C,et al.A large annotated corpus for learning natural language inference[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.2015:632-642. [32]WILLIAMS A,NANGIA N,BOWMAN S.A Broad-CoverageChallenge Corpus for Sentence Understanding through Inference[EB/OL].https://aclanthology.org/N18-1101.pdf. [33]CER D,YANG Y,KONG S Y,et al.Universal Sentence Encoder[J].arXiv:1803.11175,2018. |
[1] | WANG Baocai, WU Guowei. Interpretable Credit Risk Assessment Model:Rule Extraction Approach Based on AttentionMechanism [J]. Computer Science, 2025, 52(10): 50-59. |
[2] | ZHENG Hanyuan, GE Rongjun, HE Shengji, LI Nan. Direct PET to CT Attenuation Correction Algorithm Based on Imaging Slice Continuity [J]. Computer Science, 2025, 52(10): 115-122. |
[3] | XU Hengyu, CHEN Kun, XU Lin, SUN Mingzhai, LU Zhou. SAM-Retina:Arteriovenous Segmentation in Dual-modal Retinal Image Based on SAM [J]. Computer Science, 2025, 52(10): 123-133. |
[4] | WEN Jing, ZHANG Songsong, LI Xufeng. Target Tracking Method Based on Cross Scale Fusion of Features and Trajectory Prompts [J]. Computer Science, 2025, 52(10): 144-150. |
[5] | SHENG Xiaomeng, ZHAO Junli, WANG Guodong, WANG Yang. Immediate Generation Algorithm of High-fidelity Head Avatars Based on NeRF [J]. Computer Science, 2025, 52(10): 159-167. |
[6] | ZHENG Dichen, HE Jikai, LIU Yi, GAO Fan, ZHANG Dengyin. Low Light Image Adaptive Enhancement Algorithm Based on Retinex Theory [J]. Computer Science, 2025, 52(10): 168-175. |
[7] | RUAN Ning, LI Chun, MA Haoyue, JIA Yi, LI Tao. Review of Quantum-inspired Metaheuristic Algorithms and Its Applications [J]. Computer Science, 2025, 52(10): 190-200. |
[8] | XIONG Zhuozhi, GU Zhouhong, FENG Hongwei, XIAO Yanghua. Subject Knowledge Evaluation Method for Language Models Based on Multiple ChoiceQuestions [J]. Computer Science, 2025, 52(10): 201-207. |
[9] | WANG Jian, WANG Jingling, ZHANG Ge, WANG Zhangquan, GUO Shiyuan, YU Guiming. Multimodal Information Extraction Fusion Method Based on Dempster-Shafer Theory [J]. Computer Science, 2025, 52(10): 208-216. |
[10] | CHEN Yuyan, JIA Jiyuan, CHANG Jingwen, ZUO Kaiwen, XIAO Yanghua. SPEAKSMART:Evaluating Empathetic Persuasive Responses by Large Language Models [J]. Computer Science, 2025, 52(10): 217-230. |
[11] | LI Sihui, CAI Guoyong, JIANG Hang, WEN Yimin. Novel Discrete Diffusion Text Generation Model with Convex Loss Function [J]. Computer Science, 2025, 52(10): 231-238. |
[12] | ZHANG Jiawei, WANG Zhongqing, CHEN Jiali. Multi-grained Sentiment Analysis of Comments Based on Text Generation [J]. Computer Science, 2025, 52(10): 239-246. |
[13] | CHEN Jiahao, DUAN Liguo, CHANG Xuanwei, LI Aiping, CUI Juanjuan, HAO Yuanbin. Text Sentiment Classification Method Based on Large-batch Adversarial Strategy and EnhancedFeature Extraction [J]. Computer Science, 2025, 52(10): 247-257. |
[14] | WANG Ye, WANG Zhongqing. Text Simplification for Aspect-based Sentiment Analysis Based on Large Language Model [J]. Computer Science, 2025, 52(10): 258-265. |
[15] | ZHAO Jinshuang, HUANG Degen. Summary Faithfulness Evaluation Based on Data Augmentation and Two-stage Training [J]. Computer Science, 2025, 52(10): 266-274. |
|