Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 250100139-11.doi: 10.11896/jsjkx.250100139
• Image Processing & Multimedia Technology • Previous Articles Next Articles
ZHANG Wei1,2,3, CAI Yufan1, YE Lintao1, LIU Dazhi1
CLC Number:
| [1]LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60:91-110. [2]DALAL N,TRIGGS B.Histograms of oriented gradients forhuman detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.IEEE,2005:886-893. [3]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2014:580-587. [4]GIRSHICK R.Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision(ICCV).IEEE,2015:1440-1448. [5]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:TowardsReal-Time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [6]LIU W,ANGUELOV D,ERHAN D,et al.Ssd:Single shotmultibox detector[C]//Computer Vision-ECCV 2016:14th European Conference,Amsterdam,The Netherlands.Springer,2016:21-37. [7]REDMON J,DIVVALA S,GIRSHICK R,et al.You Only Look Once:Unified,Real-Time Object Detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2016:779-788. [8]REDMON J,FARHADI A.YOLO9000:Better,Faster,Stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2017:6517-6525. [9]FARHADI A,REDMON J.Yolov3:An incremental improve-ment[C]//Computer Vision and Pattern Recognition.Berlin:Springer,2018:1-6. [10]SALSCHEIDER N O.Featurenms:Non-maximum suppression by learning feature embeddings[C]//2020 25th International Conference on Pattern Recognition(ICPR).IEEE,2021:7848-7854. [11]VASWANI A.Attention is all you need[J].Advances in Neural Information Processing Systems,2017,30:5998-6008. [12]CARION N,MASSA F,SYNNAEVE G,et al.End-to-End Object Detection with Transformers[C]//Computer Vision-ECCV 2020.Cham:Springer,2020:213-229. [13]ZHAO Y,LV W,XU S,et al.Detrs beat yolos on real-time ob-ject detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2024:16965-16974. [14]ZHANG X,SONG Y,SONG T,et al.LDConv:Linear deformable convolution for improving convolutional neural networks[J].Image and Vision Computing,2024,149:105190. [15]XIA Z,PAN X,SONG S,et al.Vision transformer with deform-able attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:4794-4803. [16]GONG W.Lightweight Object Detection:A Study Based onYOLOv7 Integrated with ShuffleNetv2 and Vision Transformer[J].arxiv:2403.01736,2024. [17]LIU M,DU H,ZHAO Y,et al.Image small target detectionbased on deep learning with SNR controlled sample generation[J].Current Trends in Computer Science and Mechanical Automation,2017,1:211-220. [18]LU X,LI B,YUE Y,et al.Grid R-CNN[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2019:7355-7364. [19]MCINTOSH B,VENKATARAMANAN S,MAHALANOBISA.Infrared Target Detection in Cluttered Environments by Maximization of a Target to Clutter Ratio(TCR) Metric Using a Convolutional Neural Network[J].IEEE Transactions on Aerospace and Electronic Systems,2021,57(1):485-496. [20]TIAN Z,SHEN C,CHEN H,et al.FCOS:A Simple and Strong Anchor-Free Object Detector[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(4):1922-1933. [21]TIAN Y,WANG S,LI E,et al.MD-YOLO:Multi-scale Dense YOLO for small target pest detection[J].Computers and Electronics in Agriculture,2023,213:108233. [22]ABOAH A,WANG B,BAGCI U,et al.Real-time Multi-ClassHel-met Violation Detection Using Few-Shot Data Sampling Technique and YOLOv8[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).IEEE,2023:5350-5358. [23]LI Y C,SHI W Y,FENG C.Lightweight YOLOv8 detection algorithm for small object detection in UAV aerial photography[J].Computer Engineering and Applications,2024,60(17):167-178. [24]WANG H,LIU C,CAI Y,et al.YOLOv8-QSD:An Improved Small Object Detection Algorithm for Autonomous Vehicles Based on YOLOv8[J].IEEE Transactions on Instrumentation and Measurement,2024,73:1-16. [25]DAI Z,CAI B,LIN Y,et al.UP-DETR:Unsupervised Pre-train-ing for Object Detection with Transformers[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2021:1601-1610. [26]MISRA I,GIRDHAR R,JOULIN A.An End-to-End Trans-former Model for 3D Object Detection[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV).IEEE,2021:2886-2897. [27]HUO D,KASTNER M A,LIU T,et al.Small object detection for birds with Swin transformer[C]//2023 18th International Conference on Machine Vision and Applications(MVA).IEEE,2023:1-5. [28]WU J,JING R,BAI Y,et al.Small insulator defects detection based on multi-scale feature interaction transformer for UAV-assisted power IoVT[J].IEEE Internet of Things Journal,2024,11(13):23410-23427. [29]JING M,ZHANG J.Research on Microscale Vehicle Logo Detection Based on Real-Time DEtection TRansformer(RT-DETR)[J].Sensors,2024,24(21):6987. [30]YU C,SHIN Y.Object Detection in UAV Images Based on RT-DETR with CG Downsampling and CCFMP[C]//2024 IEEE VTS Asia Pacific Wireless Communications Symposium(APWCS).IEEE,2024:1-4. [31]HUANG J,LI T.SMall object detection by DETR via information augmentation and adaptive feature fusion[C]//Proceedings of 2024 ACM ICMR Workshop on Multimodal Video Retrieval.2024:39-44. [32]DAI J,QI H,XIONG Y,et al.Deformable convolutional net-works[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:764-773. [33]WANG C Y,LIAO H Y M,WU Y H,et al.CSPNet:A New Backbone that can Enhance Learning Capability of CNN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).IEEE,2020:1571-1580. [34]SUNKARA R,LUO T.No more strided convolutions or poo-ling:A new CNN building block for low-resolution images and small objects[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases.Cham:Sprin-ger,2022:443-459. [35]CUI Y,REN W,KNOLL A.Omni-Kernel Network for ImageRestoration[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2024:1426-1434. [36]CHEN J,KAO S,HE H,et al.Run,don’t walk:chasing higher FLOPS for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:12021-12031. [37]CIAGLIA F,ZUPPICHINI F S,GUERRIE P,et al.Roboflow 100:A rich,multi-domain object detection benchmark[J].arXiv:2211.13523,2022. [38]WANG X Q,GAO H B,JIA Z M.Improved road defect detection algorithm of YOLOv8[J].Computer Engineering and Applications,2024,60(17):179-190. [39]FU C,LIU R,FAN X,et al.Rethinking general underwater object detection:Datasets,challenges,and solutions[J].Neurocomputing,2023,517:243-256. [40] SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-CAM:Visual Explanations from Deep Networks via Gradient-Based Localization[C]//2017 IEEE International Conference on Computer Vision(ICCV).IEEE,2017:618-626. |
| [1] | HU Hailong, XU Xiangwei, LI Yaqian. Drug Combination Recommendation Model Based on Dynamic Disease Modeling [J]. Computer Science, 2025, 52(9): 96-105. |
| [2] | DENG Jiayan, TIAN Shirui, LIU Xiangli, OUYANG Hongwei, JIAO Yunjia, DUAN Mingxing. Trajectory Prediction Method Based on Multi-stage Pedestrian Feature Mining [J]. Computer Science, 2025, 52(9): 241-248. |
| [3] | DING Zhengze, NIE Rencan, LI Jintao, SU Huaping, XU Hang. MTFuse:An Infrared and Visible Image Fusion Network Based on Mamba and Transformer [J]. Computer Science, 2025, 52(8): 188-194. |
| [4] | LIU Huayong, XU Minghui. Hash Image Retrieval Based on Mixed Attention and Polarization Asymmetric Loss [J]. Computer Science, 2025, 52(8): 204-213. |
| [5] | SHEN Tao, ZHANG Xiuzai, XU Dai. Improved RT-DETR Algorithm for Small Object Detection in Remote Sensing Images [J]. Computer Science, 2025, 52(8): 214-221. |
| [6] | LIU Chengzhuang, ZHAI Sulan, LIU Haiqing, WANG Kunpeng. Weakly-aligned RGBT Salient Object Detection Based on Multi-modal Feature Alignment [J]. Computer Science, 2025, 52(7): 142-150. |
| [7] | HUANG Xingyu, WANG Lihui, TANG Kun, CHENG Xinyu, ZHANG Jian, YE Chen. EFormer:Efficient Transformer for Medical Image Registration Based on Frequency Division and Board Attention [J]. Computer Science, 2025, 52(7): 151-160. |
| [8] | XU Yongwei, REN Haopan, WANG Pengfei. Object Detection Algorithm Based on YOLOv8 Enhancement and Its Application Norms [J]. Computer Science, 2025, 52(7): 189-200. |
| [9] | WANG Youkang, CHENG Chunling. Multimodal Sentiment Analysis Model Based on Cross-modal Unidirectional Weighting [J]. Computer Science, 2025, 52(7): 226-232. |
| [10] | LIU Yajun, JI Qingge. Pedestrian Trajectory Prediction Based on Motion Patterns and Time-Frequency Domain Fusion [J]. Computer Science, 2025, 52(7): 92-102. |
| [11] | LI Mengxi, GAO Xindan, LI Xue. Two-way Feature Augmentation Graph Convolution Networks Algorithm [J]. Computer Science, 2025, 52(7): 127-134. |
| [12] | LONG Xiao, HUANG Wei, HU Kai. Bi-MI ViT:Bi-directional Multi-level Interaction Vision Transformer for Lung CT ImageClassification [J]. Computer Science, 2025, 52(6A): 240700183-6. |
| [13] | CHEN Xianglong, LI Haijun. LST-ARBunet:An Improved Deep Learning Algorithm for Nodule Segmentation in Lung CT Images [J]. Computer Science, 2025, 52(6A): 240600020-10. |
| [14] | LIU Yuanhong, WU Yubin. Local Linear Embedding Algorithm Based on Probability Model and Information Entropy [J]. Computer Science, 2025, 52(6A): 240500021-8. |
| [15] | WANG Xuejian, WANG Yiheng, SUN Xinpo, LIU Chuan, JIA Ming, ZHAO Chao, YANG Chao. Extraction of Crustal Deformation Anomalies Based on Transformer-Isolation Forest [J]. Computer Science, 2025, 52(6A): 240600155-6. |
|
||