Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 250100019-7.doi: 10.11896/jsjkx.250100019

• Image Processing & Multimedia Technology • Previous Articles     Next Articles

Point Cloud Registration Network Integrating Adaptive Optimization and Multi-dimensional Focusing

YUE Qianwen1, WANG Dongqiang2, ZHANG Qiang1   

  1. 1 Department of Artificial Intelligence,Chongqing University of Technology,Chongqing 401135,China
    2 CCCC FIRST HIGHWAY CONSULTANTS CO.LTD,Xi’an 710075,China
  • Online:2025-11-15 Published:2025-11-10
  • Supported by:
    Research and Demonstration of Digital Application Technology for Key City Business(KYHT2023-113).

Abstract: In the field of point cloud registration,effectively capturing detailed features and enhancing registration accuracy,particularly when handling point clouds with low overlap rates,are two primary challenges.Traditional feature extraction methods have achieved some success but remain insufficient in mining geometric information,leading to limited feature discrimination.Current techniques primarily rely on position encoding and geometric embedding strategies,which enhance geometric understanding but still struggle with accuracy in high-outlier scenes.To address these issues,this paper introduces ROPNet,a novel registration network that integrates adaptive optimization and multi-dimensional focusing.ROPNet’s design includes multi-dimensional focusing,adaptive modulation kernels,and a dynamic optimization selector.These components enable the network to capture both global features and local details,accurately identify spatial positions and correspondences,and better understand the intrinsic structure of point cloud data.Additionally,ROPNet’s robust design significantly improves the identification of inliers,thereby significantly improving registration accuracy.Experimental results demonstrate ROPNet’s superior performance.On the 3DMatch dataset,ROPNet achieves a 92.4% registration recall rate and a 71.3% inlier ratio.On the KITTI dataset,it attains 99.8% registration accuracy,with relative rotation and translation errors reduces to 0.24 degrees and 6.6 cm,respectively.

Key words: Point cloud registration, Multi-dimensional focusing, Deep learning, Feature extraction, Adaptive optimization

CLC Number: 

  • TP391.41
[1]SCHNABEL R,WAHL R,KLEIN R.Efficient ransac for point-cloud shape detection[C]//Computer Graphics Forum.2007:214-226.
[2]AIGER D,MITRA N J,COHEN-OR D.4-points congruent sets for robust pairwise surface registration[C]//ACM SIGGRAPH 2008.2008:1-10.
[3]MELLADO N,AIGER D,MITRA N J.Super 4pcs fast globalpointcloud registration via smart indexing[C]//Computer Graphics Forum.2014:205-215.
[4]SCHENKER P S.SENSOR FUSION IV:Control paradigms and data structures[C]//Proceedings of the Meeting,Boston,Ma(Number SPIE-1611).Society of Photo-Optical Instrumentation Engineers(SPIE Proceedings.Vol.1611),1992.
[5]MAGNUSSON M.The three dimensional normal-distributionstransform:an efficient representation for registration,surface analysis,and loop detection[D].Orebro universitet,2009.
[6]SHARP G C,LEE S W,WEHED K.Icp registration using invariant features[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(1):90-102.
[7]BOUAZIZ S,AGLIASACCHI A,PAULY M.Sparse iterativeclosest point[C]//Computer Graphics Forum.2013:113-123.
[8]YANG J,LI H,CAMPBELL D,et al.Go-icp:A globally optimal solution to 3d icp point-set registration[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,38(11):2241-2254.
[9]RUSU R B,BLODOW N,BEETZ M.Fast point feature histograms(fpfh) for 3d registration[C]//2009 IEEE International Conference on Robotics and Automation.IEEE,2009:3212-3217.
[10]SALTI S,TOMBARI F,DI STEFANO L.Shot:Unique signatures of histograms for surface and texture description[J].Computer Vision and Image Understanding,2014,125:251-264.
[11]CHOY C,PARK J,KOLTUN V.Fully convolutional geometric features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:8958-8966.
[12]BAI X,LUO Z,ZHOU L,et al.D3feat:Joint learning of dense detection and description of 3d local features[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:6359-6367.
[13]AOKI Y,GOFORTH H,SRIVATSAN R A,et al.Pointnetlk:Robust & efficient point cloud registration using pointnet[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:7163-7172.
[14]BAKER S,MATTHEWS I.Lucas-kanade 20 years on:A unifying framework[J].International Journal of Computer Vision,2004,56:221-255.
[15]QI C R,SU H,MO K,et al.Pointnet:Deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:652-660.
[16]WANG Y,SOLOMON J M.Deep closest point:Learning representations for point cloud registration[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:3523-3532.
[17]HUANG S,GOJCIC Z,USVYATSOV M,et al.Predator:Re-gistration of 3d point clouds with low overlap[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:4267-4276.
[18]HUANG X,QU W,ZUO Y,et al.Imfnet:Interpretable multimodal fusion for point cloud registration[J].IEEE Robotics and Automation Letters,2022,7(4):12323-12330.
[19]YEW Z J,LEE J H.Regtr:End-to-end point cloud correspondences with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:6677-6686.
[20]THOMAS H,QI C R,DESCHAUD J E,et al.Kpconv:Flexible and deformable convolution for point clouds[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:6411-6420.
[21]VASWANI A.Attention is all you need[C]//Advances in Neural Information Processing Systems.2017.
[22]YU H,LI F,SALEH M.Cofinet:Reliable coarse-to-fine corre-spondences for robust point cloud registration[C]//Advances in Neural Information Processing Systems.2021:23872-23884.
[23]LU F,CHEN G,LIU Y,et al.Hregnet:A hierarchical network for large-scale outdoor lidar point cloud registration[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:16014-16023.
[24]QIN Z,YU H,WANG C,et al.Geotransformer:Fast and robust point cloud registration with geometric transformer[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(8):9806-9821.
[25]SINKHORN R,KNOPP P.Concerning nonnegative matricesand doubly stochastic matrices[J].Pacific Journal of Mathema-tics,1967,21(2):343-348.
[26]ARUN K S,HUANG T S,BLOSTEIN S D.Least-squares fitting of two 3-d point sets[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,5:698-700.
[27]PASZKE A,GROSS S,MASSA F,et al.Pytorch:An imperative style,high-performance deep learning library[C]//Advances in Neural Information Processing Systems.2019.
[28]KONUR O,KINGMA D,BA J.Adam:A method for stochastic optimization[C]//ICLR.2015:1-15.
[29]ZENG A,SONG S,NIEßNER M,et al.3dmatch:Learning local geometric descriptors from rgb-d reconstructions[C]//Procee-dings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1802-1811.
[30]GEIGER A,LENZ P,URTASUN R.Are we ready for autonomous driving? the kitti vision benchmark suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2012:3354-3361.
[1] YIN Shi, SHI Zhenyang, WU Menglin, CAI Jinyan, YU De. Deep Learning-based Kidney Segmentation in Ultrasound Imaging:Current Trends and Challenges [J]. Computer Science, 2025, 52(9): 16-24.
[2] ZENG Lili, XIA Jianan, LI Shaowen, JING Maike, ZHAO Huihui, ZHOU Xuezhong. M2T-Net:Cross-task Transfer Learning Tongue Diagnosis Method Based on Multi-source Data [J]. Computer Science, 2025, 52(9): 47-53.
[3] LI Yaru, WANG Qianqian, CHE Chao, ZHU Deheng. Graph-based Compound-Protein Interaction Prediction with Drug Substructures and Protein 3D Information [J]. Computer Science, 2025, 52(9): 71-79.
[4] LUO Chi, LU Lingyun, LIU Fei. Partial Differential Equation Solving Method Based on Locally Enhanced Fourier NeuralOperators [J]. Computer Science, 2025, 52(9): 144-151.
[5] LIU Leyuan, CHEN Gege, WU Wei, WANG Yong, ZHOU Fan. Survey of Data Classification and Grading Studies [J]. Computer Science, 2025, 52(9): 195-211.
[6] LIU Wei, XU Yong, FANG Juan, LI Cheng, ZHU Yujun, FANG Qun, HE Xin. Multimodal Air-writing Gesture Recognition Based on Radar-Vision Fusion [J]. Computer Science, 2025, 52(9): 259-268.
[7] LIU Zhengyu, ZHANG Fan, QI Xiaofeng, GAO Yanzhao, SONG Yijing, FAN Wang. Review of Research on Deep Learning Compiler [J]. Computer Science, 2025, 52(8): 29-44.
[8] TANG Boyuan, LI Qi. Review on Application of Spatial-Temporal Graph Neural Network in PM2.5 ConcentrationForecasting [J]. Computer Science, 2025, 52(8): 71-85.
[9] ZHENG Cheng, YANG Nan. Aspect-based Sentiment Analysis Based on Syntax,Semantics and Affective Knowledge [J]. Computer Science, 2025, 52(7): 218-225.
[10] LI Mengxi, GAO Xindan, LI Xue. Two-way Feature Augmentation Graph Convolution Networks Algorithm [J]. Computer Science, 2025, 52(7): 127-134.
[11] ZHOU Lei, SHI Huaifeng, YANG Kai, WANG Rui, LIU Chaofan. Intelligent Prediction of Network Traffic Based on Large Language Model [J]. Computer Science, 2025, 52(6A): 241100058-7.
[12] GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8.
[13] TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9.
[14] RAN Qin, RUAN Xiaoli, XU Jing, LI Shaobo, HU Bingqi. Function Prediction of Therapeutic Peptides with Multi-coded Neural Networks Based on Projected Gradient Descent [J]. Computer Science, 2025, 52(6A): 240800024-6.
[15] ZOU Ling, ZHU Lei, DENG Yangjun, ZHANG Hongyan. Source Recording Device Verification Forensics of Digital Speech Based on End-to-End DeepLearning [J]. Computer Science, 2025, 52(6A): 240800028-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!