Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 241000139-7.doi: 10.11896/jsjkx.241000139
• Big Data & Data Science • Previous Articles Next Articles
XIANG Yi1, CONG Lili2, WANG Weipeng2, ZHOU Xiaohang2
CLC Number:
| [1]PETROPOULOS F,APILETTI D,ASSIMAKOPOULOS V,et al. Forecasting:Theory and practice[J].International Journal of Forecasting,2022,38(3):705-871. [2]ZHOU F,PAN C,MA L,et al.SLOTH:Structured learning and task-based optimization for time series forecasting on hierarchies[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:11417-11425. [3]TAIEB S B,TAYLOR J W,HYNDMAN R J.Coherent probabilistic forecasts for hierarchical time series[C]//International Conference on Machine Learning.2017:3348-3357. [4]SEEGER M,RANGAPURAM S,WANG Y,et al.Approximate Bayesian inference in linear state space models for intermittent demand forecasting at scale[J].arXiv:1709.07638,2017. [5]SEEGER M,SALINAS D,FLUNKERT V.Bayesian intermit-tent demand forecasting for large inventories[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.2016:4653-4661. [6]JEON J,PANAGIOTELIS A,PETROPOULOS F.Probabilistic forecast reconciliation with applications to wind power and electric load[J].European Journal of Operational Research,2019,279(2):364-379. [7]TAIEB S B,TAYLOR J W,HYNDMAN R J.Hierarchicalprobabilistic forecasting of electricity demand with smart meter data[J].Journal of the American Statistical Association,2021,116(533):27-43. [8]JANUSCHOWSKI T,KOLASSA S.3.2 A classification of business forecasting problems[M]//Business Forecasting:Practical Problems and Solutions.Germany:Wiley,2016:171. [9]CHOPRA S,MEINDL P.Supply chain management.Strategy,planning & operation[M].Springer,2007. [10]CAPLICE C G,SHEFFI Y.ESD.260J/1.260J/15.770J Logistics Systems,Fall 2003[M/OL].Massachusetts Institute of Technology,2003. [11]BOX G E,JENKINS G M,REINSEL G C,LJUNG G M.Time series analysis:Forecasting and control[M].John Wiley & Sons,2015. [12]MONTGOMERY D C,JENNINGS C L,KULAHCI M.Intro-duction to time series analysis and forecasting[M].John Wiley &Sons,2015. [13]MANCUSO P,PICCIALLI V,SUDOSO A M.A machine learning approach for forecasting hierarchical time series[J].Expert Systems with Applications,2021,182:115102. [14]GRUNFELD Y,GRILICHES Z.Is aggregation necessarily bad?[J].The Review of Economics and Statistics,1960,42(1):1-13. [15]FLIEDNER G.An investigation of aggregate variable time se-ries forecast strategies with specific subaggregate time series statistical correlation[J].Computers & Operations Research,1999,26(10-11):1133-1149. [16]ORCUTT G H,WATTS H W,EDWARDS J B.Data aggregation and information loss[J].The American Economic Review,1968,58(4):773-787. [17]EDWARDS J B,ORCUTT G H.Should aggregation prior to estimation be the rule?[J].The Review of Economics and Statistics,1969,51(4):409-420. [18]SCHWARZKOPF A B,TERSINE R J,MORRIS J S.Top-down versus bottom-up forecasting strategies[J].The International Journal of Production Research,1988,26(11):1833-1843. [19]HYNDMAN R J,AHMED R A,ATHANASOPOULOS G,et al.Optimal combination forecasts for hierarchical time series[J].Computational Statistics & Data Analysis,2011,55(9):2579-2589. [20]WICKRAMASURIYA S L,ATHANASOPOULOS G,HYND-MAN R J.Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization[J].Journal of the American Statistical Association,2019,114(526):804-819. [21]TAIEB S B,KOO B.Regularized regression for hierarchicalforecasting without unbiasedness conditions[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2019:1337-1347. [22]SHLIFER E,WOLFF R W.Aggregation and proration in forecasting[J].Management Science,1979,25(6):594-603. [23]ABOLGHASEMI M,HYNDMAN R J,TARR G,et al.Machine learning applications in time series hierarchical forecasting[J].arXiv preprint arXiv:1912.00370,2019. [24]SHIRATORI T,KOBAYASHI K,TAKANO Y.Prediction of hierarchical time series using structured regularization and its application to artificial neural networks[J].Plos One,2020,15(11):e0242099. [25]BURBA D,CHEN T.A trainable reconciliation method for hierarchical time-series[J].arXiv preprint arXiv:2101.01329,2021. [26]MISHCHENKO K,MONTGOMERY M,VAGGI F.A self-supervised approach to hierarchical forecasting with applications to groupwise synthetic controls[J].arXiv:1906.10586,2019. [27]GLEASON J L.Forecasting hierarchical time series with a regularized embedding space[C]//MileTS'20:6th KDD Workshop on Mining and Learning from Time Series.2020:883-894. [28]HAN X,DASGUPTA S,GHOSH J.Simultaneously reconciled quantile forecasting of hierarchically related time series[C]//International Conference on Artificial Intelligence and Statistics.2021:190-198. [29]RANGAPURAM S S,WERNER L D,BENIDIS K,et al.End-to-end learning of coherent probabilistic forecasts for hierarchical time series[C]//International Conference on Machine Lear-ning.PMLR,2021:8832-8843. [30]WANG S,ZHOU F,SUN Y,et al.End-to-end modeling of hierarchical time series using autoregressive transformer and conditional normalizing flow-based reconciliation[C]//2022 IEEE International Conference on Data Mining Workshops(ICDMW).2022:1087-1094. [31]XIANG Y,SUN H,TU W.HDResNet:Hierarchical-decomposition residual network for hierarchical time series forecasting[C]//2023 International Joint Conference on Neural Networks (IJCNN).2023:1-8. [32]ROSTAMI-TABAR B,BABAI M Z,DUCQ Y,et al.Non-stationary demand forecasting by cross-sectional aggregation[J].International Journal of Production Economics,2015,170:297-309. [33]MIRCETIC D,ROSTAMI-TABAR B,NIKOLICIC S,et al.Forecasting hierarchical time series in supply chains:An empirical investigation[J].International Journal of Production Research,2022,60(8):2514-2533. [34]VILLEGAS M A,PEDREGAL D J.Supply chain decision support systems based on a novel hierarchical forecasting approach[J].Decision Support Systems,2018,114:29-36. [35]ABOLGHASEMI M,HYNDMAN R J,SPILIOTIS E,et al.Model selection in reconciling hierarchical time series[J].Machine Learning,2022,111:739-789. [36]ABOLGHASEMI M,TARR G,BERGMEIR C.Machine learning applications in hierarchical time series forecasting:Investigating the impact of promotions[J].International Journal of Forecasting,2024,40(2):597-615. [37]SPILIOTIS E,ABOLGHASEMI M,HYNDMAN R J,et al.Hierarchical forecast reconciliation with machine learning[J].Applied Soft Computing,2021,112:107756. [38]KARMY J P,MALDONADO S.Hierarchical time series fore-casting via support vector regression in the European travel retail industry[J].Expert Systems with Applications,2019,137:59-73. [39]BENABDALLAH BENARMAS R,BEGHDAD BEY K.A deep learning hierarchical approach to road traffic forecasting[J].Journal of Forecasting,2024,43(5):1294-1307. [40]ATHANASOPOULOS G,GAMAKUMARA P,PANAGIO-TELIS A,et al.Hierarchical forecasting[M]//Macroeconomic Forecasting in the Era of Big Data.Advanced Studies in Theoretical and Applied Econometrics.2020,52:689-719. [41]BISAGLIA L,DI FONZO T,GIROLIMETTO D.Fully reconciled GDP forecasts from income and expenditure sides[R].ar-Xiv:2004.03864,2020. [42]REDELICO F O,PROTO A N,AUSLOOS M.Hierarchicalstructures in the Gross Domestic Product per capita fluctuation in Latin American countries[J].Physica A:Statistical Mechanics and its Applications,2009,388(17):3527-3535. [43]WEISS C.Essays in hierarchical time series forecasting and forecast combination[D].University of Cambridge,2018. |
| [1] | WANG Yongquan, SU Mengqi, SHI Qinglei, MA Yining, SUN Yangfan, WANG Changmiao, WANG Guoyou, XI Xiaoming, YIN Yilong, WAN Xiang. Research Progress of Machine Learning in Diagnosis and Treatment of Esophageal Cancer [J]. Computer Science, 2025, 52(9): 4-15. |
| [2] | YIN Shi, SHI Zhenyang, WU Menglin, CAI Jinyan, YU De. Deep Learning-based Kidney Segmentation in Ultrasound Imaging:Current Trends and Challenges [J]. Computer Science, 2025, 52(9): 16-24. |
| [3] | ZENG Lili, XIA Jianan, LI Shaowen, JING Maike, ZHAO Huihui, ZHOU Xuezhong. M2T-Net:Cross-task Transfer Learning Tongue Diagnosis Method Based on Multi-source Data [J]. Computer Science, 2025, 52(9): 47-53. |
| [4] | LI Yaru, WANG Qianqian, CHE Chao, ZHU Deheng. Graph-based Compound-Protein Interaction Prediction with Drug Substructures and Protein 3D Information [J]. Computer Science, 2025, 52(9): 71-79. |
| [5] | LUO Chi, LU Lingyun, LIU Fei. Partial Differential Equation Solving Method Based on Locally Enhanced Fourier NeuralOperators [J]. Computer Science, 2025, 52(9): 144-151. |
| [6] | LIU Leyuan, CHEN Gege, WU Wei, WANG Yong, ZHOU Fan. Survey of Data Classification and Grading Studies [J]. Computer Science, 2025, 52(9): 195-211. |
| [7] | LIU Wei, XU Yong, FANG Juan, LI Cheng, ZHU Yujun, FANG Qun, HE Xin. Multimodal Air-writing Gesture Recognition Based on Radar-Vision Fusion [J]. Computer Science, 2025, 52(9): 259-268. |
| [8] | LIU Zhengyu, ZHANG Fan, QI Xiaofeng, GAO Yanzhao, SONG Yijing, FAN Wang. Review of Research on Deep Learning Compiler [J]. Computer Science, 2025, 52(8): 29-44. |
| [9] | TANG Boyuan, LI Qi. Review on Application of Spatial-Temporal Graph Neural Network in PM2.5 ConcentrationForecasting [J]. Computer Science, 2025, 52(8): 71-85. |
| [10] | JIANG Rui, FAN Shuwen, WANG Xiaoming, XU Youyun. Clustering Algorithm Based on Improved SOM Model [J]. Computer Science, 2025, 52(8): 162-170. |
| [11] | ZENG Xinran, LI Tianrui, LI Chongshou. Active Learning for Point Cloud Semantic Segmentation Based on Dynamic Balance and DistanceSuppression [J]. Computer Science, 2025, 52(8): 180-187. |
| [12] | ZHENG Cheng, YANG Nan. Aspect-based Sentiment Analysis Based on Syntax,Semantics and Affective Knowledge [J]. Computer Science, 2025, 52(7): 218-225. |
| [13] | ZHOU Lei, SHI Huaifeng, YANG Kai, WANG Rui, LIU Chaofan. Intelligent Prediction of Network Traffic Based on Large Language Model [J]. Computer Science, 2025, 52(6A): 241100058-7. |
| [14] | GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8. |
| [15] | TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9. |
|
||