Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 250200088-6.doi: 10.11896/jsjkx.250200088
• Big Data & Data Science • Previous Articles Next Articles
PENG Mingtian1, WANG Weishuai 2, TIAN Feng1, LI Jiangtao1, LU Yan1, MA Shuyan1, ZHU Honglin1, LIU Chi 2
CLC Number:
| [1]VULLAM N,VELLELA S S,REDDY V,et al.Multi-agent personalized recommendation system in e-commerce based on user[C]//2023 2nd International Conference on Applied Artificial Intelligence and Computing(ICAAIC).IEEE,2023:1194-1199. [2]KARN A L,KARNA R K,KONDAMUDI B R,et al.RE-TRACTED ARTICLE:Customer centric hybrid recommendation system for E-Commerce applications by integrating hybrid sentiment analysis[J].Electronic Commerce Research,2023,23(1):279-314. [3]KO H,LEE S,PARK Y,et al.A survey of recommendation systems:recommendation models,techniques,and application fields[J].Electronics,2022,11(1):141. [4]HUSSIEN F T A,RAHMA A M S,WAHAB H B A.Recom-mendation systems for e-commerce systems an overview[C]//Journal of Physics:Conference Series.IOP Publishing,2021:012024. [5] KOREN Y,BELL R,VOLINSKY C.Matrix factorization techniques for recommender systems[J].Computer,2009,42(8):30-37. [6]HE X,LIAO L,ZHANG H,et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web.2017:173-182. [7]YANG M,LI Z,ZHOU M,et al.Hicf:Hyperbolic informativecollaborative filtering[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2022:2212-2221. [8]LUO K,YANG H,WU G,et al.Deep critiquing for VAE-based recommender systems[C]//Proceedings of the 43rd Internatio-nal ACM SIGIR Conference on Research and Development in Information Retrieval.2020:1269-1278. [9]XU B B,CEN K T,HUANG J J,et al.A review of graph convolutional neural networks[J].Chinese Journal of Computers,2020,43(5):755-780. [10]LIU Y,ZHOU X,KOU H,et al.Privacy-preserving point-of-interest recommendation based on simplified graph convolutional network for geological traveling[J].ACM Transactions on Intelligent Systems and Technology,2024,15(4):1-17. [11]CHENG Z T,ZHONG T,ZHANG S M,et al.A survey of re-commendation systems based on graph learning[J].Computer Science,2022,49(9):1-13. [12]MA H J.Recommendation algorithm based on convolutionalneural network and constrained probabilistic matrix factorization[J].Computer Science,2020,47(S1):540-545. [13]WANG X,HE X,WANG M,et al.Neural graph collaborative filtering[C]//Proceedings of the 42nd international ACM SIGIR Conference on Research and Development in Information Retrieval.2019:165-174. [14]HE X,DENG K,WANG X,et al.Lightgcn:Simplifying andpowering graph convolution network for recommendation [C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:639-648. [15]XU J,HUANG J,CHEN Z,et al.ODNET:A Novel Persona-lized Origin-Destination Ranking Network for Flight Recommendation[C]//2022 IEEE 38th International Conference on Data Engineering(ICDE).IEEE,2022:3481-3493. [16]MOTTINI A,ACUNA-AGOST R.Deep choice model usingpointer networks for airline itinerary prediction[C]//Procee-dings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017:1575-1583. [17]HUANG J,LI Y,SUN S,et al.Personalized flight itineraryranking at fliggy[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management.2020:2541-2548. [18]WANG H,LOU S,JING J,et al.The EBS-A* algorithm:Animproved A* algorithm for path planning[J].PLoS One,2022,17(2):e0263841-e0263841. [19]KATOCH S,CHAUHAN S S,KUMAR V.A review on genetic algorithm:past,present,and future[J].Multimedia Tools and Applications,2021,80:8091-8126. [20]DING J L,ZHANG L.Implicit interaction feature mining and flight recommendation model for civil aviation passengers based on graph neural network[J].Computer Applications and Software,2023,40(7):166-171,273. |
|
||