Computer Science ›› 2026, Vol. 53 ›› Issue (1): 1-11.doi: 10.11896/jsjkx.250500002
• Research and Application of Large Language Model Technology • Previous Articles Next Articles
GUO Luxiang, WANG Yueyu, LI Qianyue, LI Shasha, LIU Xiaodong, JI Bin, YU Jie
CLC Number:
| [1]REN H,SHI W,BAI Q.Generative artificial intelligence em-powers the open construction of digital memory in libraries:coupling logic,application scenarios,and implementation pathways[J].Library Science Research,2025(2):44-52. [2]BAI X.Research on Multi-Contrast Brain MR Image Generation Based on Generative Adversarial Networks[D].Linyi:Linyi University,2024. [3]CHEN B,KANG J,ZHONG P,et al.Survey on Object GoalNavigation for Embodied AI[J].Journal of Software,2025,36(4):1715-1757. [4]HUANG H,LIANG Y,FU S,et al.Intelligent Taxiing Scheduling Method for Airport Aircraft Based on Multi-Agent Reinforcement Learning[J].Command Information System and Technology,2023,14(5):30-36. [5]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems.2017. [6]TAY Y,DEHGHANI M,BAHRI D,et al.Efficient transfor-mers:A survey[J].ACM Computing Surveys,2022,55(6):1-28. [7]LU X,LI J,TAO S,et al.Survey on Document-level Neural Machine Translation[J].Journal of Software,2025,36(1):152-183. [8]DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.ACL,2019:4171-4186. [9]BROWN T,MANN B,RYDER N,et al.Language models are few-shot learners[J].Advances in Neural Information Proces-sing Systems,2020,33:1877-901. [10]ACHIAM J,ADLER S,AGARWAL S,et al.GPT-4 Technical Report[J].arXiv:2303.08774,2023. [11]LIU Y.Research on Reinforcement Learning Algorithms forMulti-agent Relation Modeling and Role Generation[D].Chang-sha:National University of Defense Technology,2022. [12]SCHICK T,DWIVEDI-YU J,DESSÌ R,et al.Toolformer:Language models can teach themselves to use tools[J].Advances in Neural Information Processing Systems,2023,36:68539-51. [13]DRIESS D,XIA F,SAJJADI M S,et al.PaLM-E:An Embodied Multimodal Language Model[J].arXiv:2303.03378,2023. [14]WANG L,MA C,FENG X,et al.A survey on large language model based autonomous agents[J].Frontiers of Computer Science,2024,18(6):186345. [15]YANG N.Research on Multi-Agent Reinforcement LearningTechnology for Complex State Space Scenarios[D].Changsha:National University of Defense Technology,2022. [16]ZHANG M,JIN Z,LIU K.Counterfactual Regret Advantage-based Self-play Approach for Mixed Cooperative-competitive Multi-agent Systems[J].Journal of Software,2024,35(2):739-757. [17]LIU X,YU H,ZHANG H,et al.AgentBench:Evaluating LLMs as Agents[J].arXiv:2308.03688,2023. [18]OLANIYAN R,FADAHUNSI O,MAHESWARAN M,et al.Opportunistic edge computing:Concepts,opportunities and research challenges[J].Future Generation Computer Systems,2018,89:633-45. [19]PETERSON J L,SILBERSCHATZ A.Operating System Concepts[M].New York:Addison-Wesley,1985. [20]YANG P,DONG P,JIANG Z,et al.Novel and Universal OS Structure Model Based on Hierarchical Software Bus[J].Journal of Software,2024,35(10):4930-4947. [21]TANENBAUM A S,BOS H.Modern operating systems[M].Pearson Education Inc.,2015. [22]DORRI A,KANHERE S S,JURDAK R.Multi-agent systems:A survey[J].IEEE Access,2018,6:28573-93. [23]GUO T,CHEN X,WANG Y,et al.Large Language ModelBased Multi-Agents:A Survey of Progress and Challenges[J].arXiv:2402.01680,2024. [24]WU Q,BANSAL G,ZHANG J,et al.Autogen:Enabling next-gen llm applications via multi-agent conversation[J].arXiv:2308.08155,2023. [25]GILL S S,XU M,OTTAVIANI C,et al.AI for next generation computing:Emerging trends and future directions[J].Internet of Things,2022,19:100514. [26]MORITZ P,NISHIHARA R,WANG S,et al.Ray:A Distributed Framework for Emerging AI Applications[C]//Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation.Carlsbad:USENIX Association,2018:561-577. [27]HONG S,ZHENG X,CHEN J,et al.Metagpt:Meta programming for multi-agent collaborative framework[J].arXiv:2308.00352,2023. [28]RADFORD A,NARASIMHAN K,SALIMANS T,et al.Improving language understanding by generative pre-training[EB/OL].https://www.mikecaptain.com/resources/pdf/GPT-1.pdf. [29]RADFORD A,WU J,CHILD R,et al.Language models are unsupervised multitask learners[J].OpenAI Blog,2019,1(8):9. [30]CHOWDHERY A,NARANG S,DEVLIN J,et al.Palm:Scaling language modeling with pathways[J].Journal of Machine Learning Research,2023,24(240):1-113. [31]TOUVRON H,LAVRIL T,IZACARD G,et al.Llama:Openand efficient foundation language models[J].arXiv:2302.13971,2023. [32]GUO D,YANG D,ZHANG H,et al.Deepseek-r1:Incentivizing reasoning capability in llms via reinforcement learning[J].ar-Xiv:2501.12948,2025. [33]GE Y,REN Y,HUA W,et al.LLM as OS,agents as apps:Envisioning AIOS,agents and the AIOS-agent ecosystem[J].arXiv:2312.03815,2023. [34]MEI K,ZHU X,XU W,et al.Aios:Llm agent operating system[J].arXiv:2403.16971,2024. [35]JIA S,WANG X,SONG M,et al.Agent Centric Operating System-a Comprehensive Review and Outlook for Operating System[J].arXiv:2411.17710,2024. [36]SONG Z,LI Y,FANG M,et al.Mmac-copilot:Multi-modalagent collaboration operating system copilot[J].arXiv:2404.18074,2024. [37]ZHUO Z,LI R,LIU K,et al.Kaos:Large model multi-agentoperating system[C]//China Conference on Knowledge Graph and Semantic Computing.Singapore:Springer,2024:347-359. [38]AGASHE S,HAN J,GAN S,et al.Agent s:An open agentic framework that uses computers like a human[J].arXiv:2410.08164,2024. [39]WEI J,WANG X,SCHUURMANS D,et al.Chain-of-thoughtprompting elicits reasoning in large language models[J].Advances in Neural Information Processing Systems,2022,35:24824-24837. [40]YAO S,ZHAO J,YU D,et al.React:Synergizing reasoning and acting in language models[C]//Proceedings of the International Conference on Learning Representations(ICLR).2023. [41]SUI Y,CHUANG Y N,WANG G,et al.Stop overthinking:A survey on efficient reasoning for large language models[J].ar-Xiv:2503.16419,2025. [42]ZHANG J,ZHU Y,SUN M,et al.Lightthinker:Thinking step-by-step compression[J].arXiv:2502.15589,2025. [43]LIAO J,XU J,HE S,et al.AutoForma:A Large LanguageModel-Based Multi-Agent for Computer-Automated Design[C]//Proceedings of the 2024 IEEE International Conference on Systems,Man,and Cybernetics(SMC).IEEE,2024. [44]WALTERS S,GAO S,NERD S,et al.Eliza:A Web3 friendly AI Agent Operating System[J].arXiv:2501.06781,2025. [45]LA CAVA L,TAGARELLI A.Open models,closed minds? on agents capabilities in mimicking human personalities through open large language models[C]//Proceedings of the Proceedings of the AAAI Conference on Artificial Intelligence.2025. [46]CHAN C M,CHEN W,SU Y,et al.Chateval:Towards better llm-based evaluators through multi-agent debate [J].arXiv:2308.07201,2023. [47]CHEN M,TWOREK J,JUN H,et al.Evaluating large language models trained on code[J].arXiv:2107.03374,2021. [48]WANG X,WANG Z,LIU J,et al.Mint:Evaluating llms inmulti-turn interaction with tools and language feedback[J].arXiv:2309.10691,2023. [49]MIALON G,FOURRIER C,WOLF T,et al.Gaia:a benchmark for general ai assistants[C]//Proceedings of the The Twelfth International Conference on Learning Representations.2023. [50]JIMENEZ C E,YANG J,WETTIG A,et al.Swe-bench:Canlanguage models resolve real-world github issues?[J].arXiv:2310.06770,2023. [51]XIE T,ZHANG D,CHEN J,et al.Osworld:Benchmarking multimodal agents for open-ended tasks in real computer environments[J].Advances in Neural Information Processing Systems,2024,37:52040-52094. [52]BONATTI R,ZHAO D,BONACCI F,et al.Windows agent arena:Evaluating multi-modal os agents at scale[J].arXiv:2409.08264,2024. |
| [1] | LIU Lilong, LIU Guoming, QI Baoyuan, DENG Xueshan, XUE Dizhan, QIAN Shengsheng. Efficient Inference Techniques of Large Models in Real-world Applications:A Comprehensive Survey [J]. Computer Science, 2026, 53(1): 12-28. |
| [2] | SHAO Xinyi, ZHU Jingwei, ZHANG Liang. LLM-based Business Process Adaptation Method to Respond Long-tailed Changes [J]. Computer Science, 2026, 53(1): 29-38. |
| [3] | LIU Dayong, DONG Zhiming, GUO Qisheng, GAO Ang, QIU Xuehuan. Research on Architecture and Technology Pathways for Empowering Tactical AdversarialSimulation Experiments with LLMs [J]. Computer Science, 2026, 53(1): 39-50. |
| [4] | DUAN Pengting, WEN Chao, WANG Baoping, WANG Zhenni. Collaborative Semantics Fusion for Multi-agent Behavior Decision-making [J]. Computer Science, 2026, 53(1): 252-261. |
| [5] | LIU Leyuan, CHEN Gege, WU Wei, WANG Yong, ZHOU Fan. Survey of Data Classification and Grading Studies [J]. Computer Science, 2025, 52(9): 195-211. |
| [6] | CAI Qihang, XU Bin, DONG Xiaodi. Knowledge Graph Completion Model Using Semantically Enhanced Prompts and Structural Information [J]. Computer Science, 2025, 52(9): 282-293. |
| [7] | ZHONG Boyang, RUAN Tong, ZHANG Weiyan, LIU Jingping. Collaboration of Large and Small Language Models with Iterative Reflection Framework for Clinical Note Summarization [J]. Computer Science, 2025, 52(9): 294-302. |
| [8] | ZHU Shihao, PENG Kexing, MA Tinghuai. Graph Attention-based Grouped Multi-agent Reinforcement Learning Method [J]. Computer Science, 2025, 52(9): 330-336. |
| [9] | CHEN Jintao, LIN Bing, LIN Song, CHEN Jing, CHEN Xing. Dynamic Pricing and Energy Scheduling Strategy for Photovoltaic Storage Charging Stations Based on Multi-agent Deep Reinforcement Learning [J]. Computer Science, 2025, 52(9): 337-345. |
| [10] | WANG Limei, HAN Linrui, DU Zuwei, ZHENG Ri, SHI Jianzhong, LIU Yiqun. Privacy Policy Compliance Detection Method for Mobile Application Based on Large LanguageModel [J]. Computer Science, 2025, 52(8): 1-16. |
| [11] | WANG Dongsheng. Multi-defendant Legal Judgment Prediction with Multi-turn LLM and Criminal Knowledge Graph [J]. Computer Science, 2025, 52(8): 308-316. |
| [12] | ZHANG Yongliang, LI Ziwen, XU Jiahao, JIANG Yuchen, CUI Ying. Congestion-aware and Cached Communication for Multi-agent Pathfinding [J]. Computer Science, 2025, 52(8): 317-325. |
| [13] | LI Maolin, LIN Jiajie, YANG Zhenguo. Confidence-guided Prompt Learning for Multimodal Aspect-level Sentiment Analysis [J]. Computer Science, 2025, 52(7): 241-247. |
| [14] | SHI Xiaoyan, YUAN Peiyan, ZHANG Junna, HUANG Ting, GONG Yuejiao. Lifelong Multi-agent Task Allocation Based on Graph Coloring Hybrid Evolutionary Algorithm [J]. Computer Science, 2025, 52(7): 262-270. |
| [15] | HUO Dan, YU Fuping, SHEN Di, HAN Xueyan. Research on Multi-machine Conflict Resolution Based on Deep Reinforcement Learning [J]. Computer Science, 2025, 52(7): 271-278. |
|
||