Computer Science ›› 2018, Vol. 45 ›› Issue (11A): 422-426,452.

• Big Data & Data Mining • Previous Articles     Next Articles

Personal Learning Recommendation Based on Online Learning Behavior Analysis

CHEN Jin-yin, FANG Hang, LIN Xiang, ZHENG Hai-bin, YANG Dong-yong, ZHOU Xiao   

  1. College of Information Engineering,Zhejiang University of Technology,Hangzhou 310000,China
  • Online:2019-02-26 Published:2019-02-26

Abstract: With the wide use of online courses and the population of online learning,massive data of online learning behaviors have been collected.How to take advantages of those accumulated data through novel data mining technology for improving teaching decision and learning efficiency is becoming the research focus.In this paper,online learning behavior features are extracted,relationship between online learner’s personality and learning efficiency is modeled and analyzed,and personal learning recommendation is designed as well.First,online learner behavior features were extracted,and BP neural network based academic performance prediction algorithm was put forward,in which offline score was predicted based on accordingly online learning behavior features.Second,in order to further analyze the relationship of online learning behavior and offline practical score,a novel actual entropy based online learning behavior orderness evaluation model was proposed.Each learner’s offline academic performance can be predicted on basis of online learning orderness.Third,learners’ personalities were estimated through Felder-Silverman method.K-means algorithm was carried out on those personality vectors to achieve clusters of learners with the similar personality.Among those learners clustered into the same class,the top scored learner’s learning behavior will be recommended to the rest learners.Finally,tackinga practical online courses platform’s data as our experimental subject,plenty of experiments were carried out including online learning behavior feature extraction,offline academic performance evaluation and orderness analysis,perso-nal learning behavior recommendation,and the efficiency and application value of proposed method was proved.

Key words: Online learning behavior, BP neural network, Actual entropy, Felder-Silverman personality analysis, Personal learning recommendation

CLC Number: 

  • TP181
[1]COATES H.Student engagement in campus-based and online education:University connections[OL].
[2]STRANG K.How student behavior and reflective learning impact grades in online business courses[J].Journal of Applied Research in Higher Education,2016,8(3):390-410.
[3]PRIOR D D,MAZANOV J,MEACHEAM D,et al.Attitude,digital literacy and self efficacy:Flow-on effects for online lear-ning behavior[J].Internet & Higher Education,2016,29:91-97.
[4]BUTCHER K R,SUMNER T.How Does Prior Knowledge Impact Students’ Online Learning Behaviors?[J].International Journal of Cyber Behavior Psychology & Learning,2011,1(4):1-18.
[5]YANG C,HSIEH T.Regional differences of online learning behavior patterns[J].Electronic Library,2013,31(2):167-187.
[6]PARK Y,YU J H,JO I H.Clustering blended learning courses by online behavior data:A case study in a Korean higher education institute[J].Internet & Higher Education,2016,29:1-11.
[7]SHIMADA A,OKUBO F,YIN C,et al.Informal Learning Behavior Analysis Using Action Logs and Slide Features in E-Textbooks[C]∥International Conference on Advanced Learning Technologies.IEEE,2015:116-117.
[8]HWANG W Y,SHADIEV R,WANG C Y,et al.A pilot study of cooperative programming learning behavior and its relationship with students’ learning performance[J].Computers & Edu-cation,2012,58(4):1267-1281.
[9]TOUYA K,FAKIR M.Mining Students’ Learning Behavior in Moodle System[J].Journal of Information Technology Research (JITR),2014,7(4):12-26.
[10]YE C,KINNEBREW J S,SEGEDY J R,et al.Learning Behavior Characterization with Multi-Feature, Hierarchical Activity Sequences[C]∥Proceedings of the 8th International Conference on Educational Data Mining.2015:380-383.
[11]LINAN L C,ANGEL ALEJANDRO JUAN PEREZ.Educatio-nal data mining and learning analytics:differences,similarities and time evolution[J].Ruse Revista De Universidad Y Sociedad Del Conocimiento,2015,12(3):98-112.
[12]DURKSEN T L,CHU M W,AHMAD Z F,et al.Motivation in a MOOC:a probabilistic analysis of online learners’ basic psychological needs[J].Social Psychology of Education,2016,19(2):241-260.
[13]FITOUSSI J P,VELUPILLAI K.Technology for Mining the Big Data of MOOCs[J].Research & Practice in Assessment,2014,9:29-37.
[14]MAC CALLUM K,JEFFREY L.Factors Impacting Teachers’ Adoption of Mobile Learning[J].Journal of Information Technology Education Research,2014,13(13):141-162.
[18]O’CONNOR M C,PAUNONEN S V.Big Five personality predictors of post-secondary academic performance[J].Personality &Individual Differences,2007,43(5):971-990.
[19]POROPAT A E.A meta-analysis of the five-factor model of personality and academic performance[J].Psychological Bulletin,2009,135(2):322-328.
[20]VEDEL A.The Big Five and tertiary academic performance:A systematic review and metaanal-ysis[J].Personality & Indivi-dual Differences,2014,71(2):66-76.
[21]KONTOYIANNIS I,ALGOET P H,SUHOV Y M,et al.Nonparametric entropy estimation for stationary processes and random fields,with applications to English text[J].IEEE Transactions on Information Theory,1998,44(3):1319-1327.
[22]CAO Y,GAO J,LIAN D,et al.Orderness Predicts Academic Performance:Behavioral Analysis on Campus Lifestyle[J].eprint arXiv:1704.04013.
[23]TOKTAROVA V I,PANTUROVA A A.Learning and Tea-ching Style Models in Pedagogical Design of Electronic Educational Environment of the University[OL].
[24]倍智人才研究院.大五人格心理学:The big five[M].北京:企业管理出版社,2015.
[25]PERRY T W.16-Cattle Finishing Systems[OL].
[27]FREUND Y,MASON L.The Alternating Decision Tree Lear-ning Algorithm[C]∥Machine Learning:Sixteenth International Conference.1999:124-133.
[28]MOZINA M,DEMSAR J,KATTAN M,et al.Nomograms for Visualization of Bayesian Classifier[C]∥European Conference on Principles of Data Mining & Knowledge Discovery.2004:337-348.
[1] LIU Yu-cheng, Richard·DING, ZHANG Ying-chao. Research on Pan-real-time Problem of Medical Detection Based on BPNNs Recognition Algorithm [J]. Computer Science, 2018, 45(6): 301-307.
[2] PAN Jun-hong, WANG Yi-huai, WU Wei. Physical Quantity Regression Method Based on Optimized BP Neural Network [J]. Computer Science, 2018, 45(12): 170-176.
[3] YANG Feng-kai, CHENG Su-xia. Method for Visual Adjustment of Two-camera Position Based on GA-BP Neural Network [J]. Computer Science, 2018, 45(11A): 185-188.
[4] CHEN Wei-peng, AO Zhi-gang, GUO Jie, YU Qin, TONG Jun. Research on Cyberspace Situation Awareness Security Assessment Based on Improved BP Neural Network [J]. Computer Science, 2018, 45(11A): 335-337,341.
[5] XU Yang, CHEN Yi, HUANG Lei, XIE Xiao-yao. Crowd Counting Method Based on Multilayer BP Neural Networks and Non-parameter Tuning [J]. Computer Science, 2018, 45(10): 235-239.
[6] XU Yun-juan. Early Warning Model for Water Eutrophication Based on BP Artificial Neural Network and Genetic Algorithm [J]. Computer Science, 2017, 44(Z6): 126-128.
[7] DONG Peng, LU Wei and QIN Fu-rong. Study on Military Equipment Maintenance Support Sites’ Location Problem Based on BP and RBF Neural Network [J]. Computer Science, 2017, 44(Z6): 442-445.
[8] TANG Cheng-e. Short-term Load Forecasting of Power System Based on Alternating Particle Swarm BP Network [J]. Computer Science, 2017, 44(Z11): 133-135, 165.
[9] LIN Yu-feng, DENG Hong-min and SHI Xing-yu. Application of BP Neural Network Based on Newly Improved Particle Swarm Optimization Algorithm in Fitting Nonlinear Function [J]. Computer Science, 2017, 44(Z11): 51-54.
[10] FENG Shao-jiang, XU Ze-yu, SHI Ming-quan and WANG Xiao-dong. Research on Attitude Algorithm Based on Improved Extended Calman Filter [J]. Computer Science, 2017, 44(9): 227-229, 249.
[11] YAN Xu, LI Si-yuan and ZHANG Zheng. Application of BP Neural Network Based on Genetic Algorithms in Prediction Model of City Water Consumption [J]. Computer Science, 2016, 43(Z11): 547-550.
[12] ZHANG Lu and LEI Xue-mei. Optimized Approach on Stomach Nourishing Decision Based on PSO-BP Neural Network [J]. Computer Science, 2016, 43(Z11): 63-66, 72.
[13] XIONG Jing, GAO Yan and WANG Ya-yu. Software Defect Prediction Model Based on Adaboost Algorithm [J]. Computer Science, 2016, 43(7): 186-190.
[14] SHU Xin-zhan, FANG Kai and HU Jun-guo. Embedded Tree Measurement System Based on BP Neural Network Image Segmentation [J]. Computer Science, 2015, 42(Z6): 223-225.
[15] LI Hai-peng, LI Jing-jiao, YAN Ai-yun, WANG Ai-xia and WANG Jiao. Parallel Implementation of Genetic Neural Network in Face Recognition [J]. Computer Science, 2015, 42(Z6): 168-170, 174.
Full text



[1] . [J]. Computer Science, 2018, 1(1): 1 .
[2] LEI Li-hui and WANG Jing. Parallelization of LTL Model Checking Based on Possibility Measure[J]. Computer Science, 2018, 45(4): 71 -75, 88 .
[3] XIA Qing-xun and ZHUANG Yi. Remote Attestation Mechanism Based on Locality Principle[J]. Computer Science, 2018, 45(4): 148 -151, 162 .
[4] LI Bai-shen, LI Ling-zhi, SUN Yong and ZHU Yan-qin. Intranet Defense Algorithm Based on Pseudo Boosting Decision Tree[J]. Computer Science, 2018, 45(4): 157 -162 .
[5] WANG Huan, ZHANG Yun-feng and ZHANG Yan. Rapid Decision Method for Repairing Sequence Based on CFDs[J]. Computer Science, 2018, 45(3): 311 -316 .
[6] SUN Qi, JIN Yan, HE Kun and XU Ling-xuan. Hybrid Evolutionary Algorithm for Solving Mixed Capacitated General Routing Problem[J]. Computer Science, 2018, 45(4): 76 -82 .
[7] ZHANG Jia-nan and XIAO Ming-yu. Approximation Algorithm for Weighted Mixed Domination Problem[J]. Computer Science, 2018, 45(4): 83 -88 .
[8] WU Jian-hui, HUANG Zhong-xiang, LI Wu, WU Jian-hui, PENG Xin and ZHANG Sheng. Robustness Optimization of Sequence Decision in Urban Road Construction[J]. Computer Science, 2018, 45(4): 89 -93 .
[9] LIU Qin. Study on Data Quality Based on Constraint in Computer Forensics[J]. Computer Science, 2018, 45(4): 169 -172 .
[10] ZHONG Fei and YANG Bin. License Plate Detection Based on Principal Component Analysis Network[J]. Computer Science, 2018, 45(3): 268 -273 .