Computer Science ›› 2021, Vol. 48 ›› Issue (12): 357-363.doi: 10.11896/jsjkx.201000086
• Information Security • Previous Articles
SHI Lin-shan1, MA Chuang2, YANG Yun3, JIN Min1
CLC Number:
[1]SHI J S,LI R.Survey of Blockchain Access Control in Internet of Things[J].Journal of Software,2019,30(6):1632-1648. [2]SHA L T,XIAO F,CHEN W,et al.Leakage Perception Method for Backdoor Privacy in Industry Internet of Things Environment[J].Journal of Software,2018,29(7):1863-1879. [3]JIANG Z,WU Q,LI H W,et al.Survey on Internet End-to-end Multipath Transfer Research with Cross-layer Optimization[J].Journal of Software,2019,30(2):302-322. [4]ZHANG L.Research on Intrusion Detection Model Based on Rough Set and Artificial Immune[D].Beijing:Beijing University of Posts and Telecommunications,2014. [5]GUO P,LI J W,JUN S,et al.A Hybrid Unsupervised Clustering-Based Anomaly Detection Method[J].Tsinghua Science and Technology,2021,26(2):146-153. [6]LIU J,ZHANG H C,XU G X.An Anomaly Detector Deployment Awareness Detection Framework based on Multi-Dimensional Resources Balancing in Cloud Platform[J].IEEE Access,2018,6:44927-44932. [7]MOUSTAFA N,TURNBULL B,CHOO K.An Ensemble In- trusion Detection Technique based on proposed Statistical Flow Features for Protecting Network Traffic of Internet of Things[J].IEEE Internet of Things Journal,2018,6(3):4815-4830. [8]DU Q.Research on Distributed Deployment of Anomaly Detection Function Based on Internet of Things Environment[D].Chengdu:Journal of University of Electronic Science and Technology of China,2017. [9]ALRASHDI I,ALQAZZAZ A,ALOUFI E,et al.AD-IoT: Anomaly Detection of IoT Cyberattacks in Smart City Using Machine Learning[C]//2019 IEEE 9th Annual Computing and Communication Workshop and Conference(CCWC).IEEE,2019. [10]ZHONG J,YANG Q,GAO W.Dynamic Scheduling Algorithm for Scalable Big Data Stream in Internet of Things[J].Journal of Chongqing University of Technology(Natural Science),2019,33(9):182-189. [11]EFREM H B,ADHISTYA E P,SILMI F.Unsupervised Ano- maly Detection Using K-Means,Local Outlier Factor and One Class SVM[C]//2019 5th International Conference on Science and Technology(ICST).2019. [12]YANG L.Network Anomaly Traffic Detection Algorithm Based on SVM[C]//2017 International Conference on Robots & Intelligent System(ICRIS).2017. [13]CHEN J Y,YANG D Y.Detector Generation Algorithm Based on Online GA for Anomaly Detection[C]//2011 International Conference on Network Computing and Information Security.2011. [14]ANSHIKA C,HIMANGI M,ANUJA A.Anomaly Detection using Graph Neural Networks[C]//2019 International Confe-rence on Machine Learning,Big Data,Cloud and Parallel Computing(COMITCon).2019. [15]HUANG Y F,CHUN W Y,TANG X L.A Temporal Recur- rent Neural Network Approach to Detecting Market Anomaly Attacks[C]//2018 IEEE International Conference on Intelli-gence and Security Informatics(ISI).2018. [16]PENG H.Research of Intrusion Detection Method Based on Rough Set[J].Journal of University of Electronic Science and Technology of China,2016,35(1):108-113. [17]SUN Z X,XU H X.Survey of the Application Research of Fuzzy Technology to Intrusion Detection Systems[J].Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition),2006,26(4):73-80. [18]WANG G P,WANG J W.An anomaly detection framework for detecting anomalous virtual machines under cloud computing environment[J].International Journal of Security and its Applications,2016,10(1):75-86. [19]ZHANG H C,LIU J,WU T S.Adaptive and Incremental-Clustering Anomaly Detection Algorithm for VMs Under Cloud Platform Runtime Environment[J].IEEE access,2018(6):76984-76992. [20]XU B H,CHEN S Y,ZHANG H C.Incremental k-NN SVM Method in Intrusion Detection[C]//8th IEEE International Conference on Software Engineering and Service Science(ICSESS).2017:712-717. [21]KUMARI R,SHEETANSHU A,SINGH M K,et al.Anomaly detection in network traffic using K-mean clustering[C]//2016 3rd International Conference on Recent Advances in Information Technology(RAIT).IEEE,2016. [22]HOSSEIN S E,SAYYED M M.A Novel Anomaly Detection Algorithm Using DBSCAN and SVM in Wireless Sensor Networks[J].Wireless Personal Communications,2018,98(2):2025-2035. [23]FOKRUL A M,ALZAHRANI M Y,GEORGIEVA L.Anomaly Detection Using Agglomerative Hierarchical Clustering Algorithm[C]//International Conference on Information Science & Applications.Springer,Singapore,2018. |
[1] | XU Tian-hui, GUO Qiang, ZHANG Cai-ming. Time Series Data Anomaly Detection Based on Total Variation Ratio Separation Distance [J]. Computer Science, 2022, 49(9): 101-110. |
[2] | WANG Xin-tong, WANG Xuan, SUN Zhi-xin. Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network [J]. Computer Science, 2022, 49(8): 314-322. |
[3] | DU Hang-yuan, LI Duo, WANG Wen-jian. Method for Abnormal Users Detection Oriented to E-commerce Network [J]. Computer Science, 2022, 49(7): 170-178. |
[4] | XU Jia-nan, ZHANG Tian-rui, ZHAO Wei-bo, JIA Ze-xuan. Study on Improved BP Wavelet Neural Network for Supply Chain Risk Assessment [J]. Computer Science, 2022, 49(6A): 654-660. |
[5] | LIU Bao-bao, YANG Jing-jing, TAO Lu, WANG He-ying. Study on Prediction of Educational Statistical Data Based on DE-LSTM Model [J]. Computer Science, 2022, 49(6A): 261-266. |
[6] | SHEN Shao-peng, MA Hong-jiang, ZHANG Zhi-heng, ZHOU Xiang-bing, ZHU Chun-man, WEN Zuo-cheng. Three-way Drift Detection for State Transition Pattern on Multivariate Time Series [J]. Computer Science, 2022, 49(4): 144-151. |
[7] | WU Yu-kun, LI Wei, NI Min-ya, XU Zhi-cheng. Anomaly Detection Model Based on One-class Support Vector Machine Fused Deep Auto-encoder [J]. Computer Science, 2022, 49(3): 144-151. |
[8] | LENG Jia-xu, TAN Ming-pi, HU Bo, GAO Xin-bo. Video Anomaly Detection Based on Implicit View Transformation [J]. Computer Science, 2022, 49(2): 142-148. |
[9] | XIA Jing, MA Zhong, DAI Xin-fa, HU Zhe-kun. Efficiency Model of Intelligent Cloud Based on BP Neural Network [J]. Computer Science, 2022, 49(2): 353-367. |
[10] | ZHANG Ye, LI Zhi-hua, WANG Chang-jie. Kernel Density Estimation-based Lightweight IoT Anomaly Traffic Detection Method [J]. Computer Science, 2021, 48(9): 337-344. |
[11] | QING Lai-yun, ZHANG Jian-gong, MIAO Jun. Temporal Modeling for Online Anomaly Detection [J]. Computer Science, 2021, 48(7): 206-212. |
[12] | GUO Fu-min, ZHANG Hua, HU Rong-hua, SONG Yan. Study on Method for Estimating Wrist Muscle Force Based on Surface EMG Signals [J]. Computer Science, 2021, 48(6A): 317-320. |
[13] | CHENG Tie-jun, WANG Man. Network Public Opinion Trend Prediction of Emergencies Based on Variable Weight Combination [J]. Computer Science, 2021, 48(6A): 190-195. |
[14] | GUO Yi-shan, LIU Man-dan. Anomaly Detection Based on Spatial-temporal Trajectory Data [J]. Computer Science, 2021, 48(6A): 213-219. |
[15] | WANG Zhong-yuan, LIU Jing-lei. Kernel Subspace Clustering Based on Second-order Neighbors [J]. Computer Science, 2021, 48(6): 86-95. |
|