计算机科学 ›› 2020, Vol. 47 ›› Issue (6A): 66-69.doi: 10.11896/JsJkx.190600131

• 人工智能 • 上一篇    下一篇

基于路口相似度的信号配时方案推荐算法

骆佳磊, 孟利民   

  1. 浙江工业大学信息工程学院 杭州 310023
  • 发布日期:2020-07-07
  • 通讯作者: 孟利民(mlm@zJut.edu.cn)
  • 作者简介:1491623908@qq.com
  • 基金资助:
    国家自然科学基金项目(61871349);浙江省基础公益项目(LY18F010024,LQ19F010013)

Signal Timing Scheme Recommendation Algorithm Based on Intersection Similarity

LUO Jia-lei and MENG Li-min   

  1. College of Information Engineering,ZheJiang University of Technology,Hangzhou 310023,China
  • Published:2020-07-07
  • About author:CHENG Zhe, born in 1994, postgra-duate.His main research interests include deep learning, computer vision and bioinformatics.LIANG Yu, born in 1968, postgraduate, professor, Ph.D supervisor.His main research interests include computer networks, software-defined networks and cloud computing.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (61871349) and Natural Science Foundation of ZheJiang Pvovince,China (LY18F010024,LQ19F010013).

摘要: 信号配时控制是城市交通控制系统的重要组成部分,而传统的信号配时工作需要耗费大量的人力和时间成本,且方案的执行效果依托于配时人员的经验水平,难以满足实时调控的需求。为此,提出基于路口相似度的信号配时方案推荐算法。基于路口的各项静态属性与动态属性进行路口相似度计算,以提高路口匹配的精度。利用协同过滤的推荐方式进行推荐,将相似路口的方案推荐给目标路口,以提高信号配时工作的准确性和实效性。实验结果表明,该算法能准确推荐信号配时方案,并且具有较低的算法复杂度,适用于海量数据背景下的信号配时方案推荐。

关键词: 交通控制, 相似度, 协同过滤, 推荐, 信号配时

Abstract: Signal timing control is an important part of urban traffic control system,and traditional signal timing work requires a lot of manpower and time cost,and the implementation effect depends on the experience level of the staff.It is difficult to meet the needs of real-time regulation.Therefore,a signal timing scheme recommendation algorithm based on intersection similarity is proposed.The intersection similarity calculation is performed based on various static and dynamic attributes of the intersection to improve the accuracy of intersection matching.According to the recommendation method of collaborative filtering,the scheme of similar intersections is recommended to the target intersection to improve the accuracy and effectiveness of the signal timing work.The experimental results show that the proposed algorithm can accurately recommend the signal timing scheme and has lower algorithm complexity.It is suitable for signal timing scheme recommendation in the context of massive data.

Key words: Traffic control, Similarity, Collaborative filtering, Recommendation, Signal timing

中图分类号: 

  • TP391
[1] WU L B,NIE L,LIU B Y,et al.An intelligent traffic signal control method under VANET environment .Journal of Computers,2016,39(6):1105-1119.
[2] GAO W C,LI G L,TANA.Overview of road network matching algorithms .Journal of Software,2018,29(2):225-250.
[3] BAO J L,WANG B,YANG X C,et al.Nearest neighbor query technology under the road network environment .Journal of Software,2018,29(3):642-626.
[4] SONG Z Z,LIN L.Signal timing optimization and simulation based on regional coordinated control .Computer Application,2018,38(S2):313-316,320.
[5] FOY M D,BENEKOHALR F,GOLDBERG D E.Signal timing determination using genetic algorithms.National Research Council,Washington D C,1992:108-115.
[6] PAPPIS C P,MAMDAM E H.AFuzzy Logic Controller for a Traffic Junction.IEEE Transactionson Systems.Man and Cygernetics,1977,1(10):707-717.
[7] ALVAREZ I,POZNYAK A,MALO A.Urban traffic control problem a game theory approach//International Federation of Automatic Proceedings.2009.
[8] SHAMSHIRBAND S.A distributed approach for coordination between traffic lights based on game theory.International Arab Journal of Information Technology,2012,2(2):148-153.
[9] LI L Y,CAO D Z.Optimal prediction of road traffic flow and optimal control of intersections .Control Theory and Application,1993,10(1):67-72.
[10] GU H Z,WANG W,CHEN S F.Research on prediction model of vehicle arrival at urban road intersection based on neural network .China Journal of Highway and Transport,1998(Z1):73-77.
[11] TANG Z K,ZHENG J S,WANG W Z.Phase-change control of single intersection based on fuzzy control neural network .Journal of ZheJiang University,2006(2):29-32.
[12]QU X M,YAO H Y,WANG Y G,et al.Research on Adaptive Control Strategy Based on Effective Green Light Time Utilization [J].Transportation Research,2015(1):54-58.
[13]SUN D H,YANG C C,LIAO X Y,et al.Timing parameter estimation of intersection signals based on GPS data of public transportation [J].Control and Decision,2018,33(4):724-730.
[14]XIA X H.Urban traffic signal timing decision-making under interactive coordination reinforcement learning [J].Computer Engineering and Applications,2018,54(11):265-270.
[15]RONG H G,HUO S X,HU C H,et al.Collaborative filtering recommendation algorithm based on user similarity [J].Journal of Communications,2014,35(2):16-24.
[16]CHEN H Y,LIU C H,SUN B.A summary of the similarity measure of time series data mining [J].Control and Decision,2017,32(1):1-11.
[17]KONG X X,SU B C,WANG H Z,et al.Research on recommendation model and algorithm based on label weight scoring [J].Journal of Computers,2017,40(6):1440-1452.
[18]PAN Y T,HE F Z,YU H P.A social recommendation algorithm based on the implicit similarity of trust relationships [J].Journal of Computers,2018,41(1):65-81.
[1] 胡平, 秦克云. 基于模糊等价的毕达哥拉斯模糊集相似度构造方法[J]. 计算机科学, 2021, 48(1): 152-156.
[2] 王瑞平, 贾真, 刘畅, 陈泽威, 李天瑞. 基于DeepFM的深度兴趣因子分解机网络[J]. 计算机科学, 2021, 48(1): 226-232.
[3] 马理博, 秦小麟. 话题-位置-类别感知的兴趣点推荐[J]. 计算机科学, 2020, 47(9): 81-87.
[4] 刘君良, 李晓光. 个性化推荐系统技术进展[J]. 计算机科学, 2020, 47(7): 47-55.
[5] 李章维, 肖璐倩, 郝小虎, 周晓根, 张贵军. 蛋白质构象空间的多模态优化算法[J]. 计算机科学, 2020, 47(7): 161-165.
[6] 王萌, 丁志军. 一种新的设备指纹特征选择及模型构建方法[J]. 计算机科学, 2020, 47(7): 257-262.
[7] 邹海涛, 郑尚, 王琦, 于化龙, 高尚. 基于牛顿法的自适应高阶评分距离推荐模型研究[J]. 计算机科学, 2020, 47(6A): 494-499.
[8] 李建军, 付佳, 杨玉, 侯跃, 汪校铃, 荣欣. 基于用户兴趣的农产品推荐技术研究[J]. 计算机科学, 2020, 47(6A): 521-525.
[9] 马海江. 基于卷积神经网络与约束概率矩阵分解的推荐算法[J]. 计算机科学, 2020, 47(6A): 540-545.
[10] 束云峰, 王中卿. 基于专利结构的中文专利摘要研究[J]. 计算机科学, 2020, 47(6A): 45-48.
[11] 刘晓飞, 朱斐, 伏玉琛, 刘全. 基于用户偏好特征挖掘的个性化推荐算法[J]. 计算机科学, 2020, 47(4): 50-53.
[12] 朱磊, 胡沁涵, 赵雷, 杨季文. 基于评分偏好和项目属性的协同过滤算法[J]. 计算机科学, 2020, 47(4): 67-73.
[13] 赵楠, 皮文超, 许长桥. 一种面向多维特征分析过滤的视频推荐算法[J]. 计算机科学, 2020, 47(4): 103-107.
[14] 张云帆,周宇,黄志球. 基于语义相似度的API使用模式推荐[J]. 计算机科学, 2020, 47(3): 34-40.
[15] 李太松,贺泽宇,王冰,颜永红,唐向红. 基于循环时间卷积网络的序列流推荐算法[J]. 计算机科学, 2020, 47(3): 103-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .