计算机科学 ›› 2020, Vol. 47 ›› Issue (4): 189-193.doi: 10.11896/jsjkx.190300024

• 人工智能 • 上一篇    下一篇

一种基于改进向量投影距离的知识图谱表示方法

李鑫超, 李培峰, 朱巧明   

  1. 苏州大学计算机科学与技术学院 江苏 苏州215006江苏省计算机信息处理技术重点实验室 江苏 苏州215006
  • 收稿日期:2019-03-08 出版日期:2020-04-15 发布日期:2020-04-15
  • 通讯作者: 李培峰(pfli@suda.edu.cn)
  • 基金资助:
    国家自然科学基金项目(61836007,61772354,61773276)

Knowledge Graph Representation Based on Improved Vector Projection Distance

LI Xin-chao, LI Pei-feng, ZHU Qiao-ming   

  1. School of Computer Science and Technology,Soochow University,Suzhou,Jiangsu 215006,ChinaProvincial Key Laboratory for Computer Information Processing Technology,Suzhou,Jiangsu 215006,China
  • Received:2019-03-08 Online:2020-04-15 Published:2020-04-15
  • Contact: LI Pei-feng,born in 1971,Ph.D,professor,Ph.D supervisor,is a member of China Computer Federation.His main research interests include natural language processing and machine learning.
  • About author:LI Xin-chao,born in 1995,postgradua-te.His main research interests include natural language processing and representation learning.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(61836007,61772354,61773276).

摘要: 表示学习在知识图谱推理中有着重要的研究价值,将知识库中的实体和关系用连续低维向量进行表示,可实现知识的可计算。基于向量投影距离的知识表示学习模型在面对复杂关系时有较好的知识表达能力,但在处理一对一简单关系时容易受到无关信息的干扰,并且在一对多、多对一和多对多等复杂关系上存在性能提升空间。为此,文中提出了一个基于改进向量投影距离的知识表示学习模型SProjE,该模型引入自适应度量方法,降低了噪声信息的影响。在此基础上,通过进一步优化损失函数来提高复杂关系三元组的损失权重。该模型适用于大规模知识图谱的表示学习任务。最后,在标准知识图谱数据集WN18和FB15K上分析和验证了所提方法的有效性,基于链路预测任务的评测实验结果表明,相较于现有的模型和方法,SProjE在各项性能指标上均取得了明显的进步。

关键词: 表示学习, 链路预测, 知识图谱, 自适应度量

Abstract: Representation learning is of great value in knowledge graph reasoning,which realizes the computability of knowledge by embedding entities and relationships into a low-dimensional space.The representation learning model based on vector projection distance has better ability of knowledge representation on complex relationships.However,the model is easily susceptible to irrelevant information,especially when dealing with one-to-one relationships,and it still has space to improve performance in representing one-to-many,many-to-one and many-to-many relationships.In this paper,we proposed an improved representation learning model SProjE,which introduces an adaptive metric method to reduce the weight of noise information and optimizes the loss function to improve the loss weight of complex relation triples.The proposed model is suitable for large scale knowledge graph representation learning.At last,the experimental results on the WN18 and FB15k data sets show that SProjE achieves significant and consistent improvements compared with the existing models and methods.

Key words: Adaptive metric, Entity link prediction, Knowledge graph, Representation learning

中图分类号: 

  • TP391.1
[1]BORDES A,WESTON J,USUNIER N.Open Question Answering with Weakly Supervised EmbeddingModels[J/OL].
[2014-04-16].https://arxiv.org/pdf/1404.4326.pdf.
[2]ZHENG Z,SI X,LI F,et al.Entity Disambiguation with Freebase[C]//2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology.IEEE Computer Society,2012.
[3]DAIBER J,JAKOB M.Improving efficiency and accuracy inmultilingual entity extraction[C]//Proceedings of the 9th International Conference on Semantic Systems.ACM,2013:121-124.
[4]BERANT J,CHOU A,FROSTIG R,et al.Semantic parsing on freebase from question-answer pairs[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing.2013:1533-1544.
[5]WANG Q.Knowledge graph embedding:A survey of approaches and applications [J].IEEE Transactions on Knowledge and Data Engineering,2017,29(12):2724-2743.
[6]SHI B,WENINGER T.ProjE:Embedding Projection forKnowledge Graph Completion[C]// Proc of AAAI 2017.San Francisco:AAAI,2017:1236-1242.
[7]MIKOLOV T,SUTSKEVER I,CHEN,et al.Distributed representations of words and phrases and their compositionality[C]//Proc of NIPS 2013.Cambridge,MA:MIT Press,2013:3111-3119.
[8]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[C]//Proc of NIPS 2013.Cambridge,MA:MIT Press,2013:2787-2795.
[9]WANG Z,ZHANG J,FENG J,et al.Knowledge graph embedding by translating on hyperplanes[C]//Proc of AAAI 2014.Menlo Park,CA:AAAI,2014:1112-1119.
[10]LIN Y K,LIU Z Y,SUN M S,et al.LearingEntity and Relation Embeddings for Knowledge Graph Completion[C]//Proc of AAAI 2015.Menlo Park,CA:AAAI,2015:2181-2187.
[11]JI G,HE S,XU L,et al.Knowledge Graph Embedding viaDynamic Mapping Matrix[C]//Proc of ACL 2015.Beijing,China:ACL,2015:687-696.
[12]JI G,LIU K,HE S,et al.Knowledge Graph Completion withAdaptive Sparse Transfer Matrix[C]// Thirtieth Aaai Confe-rence on Artificial Intelligence.AAAI Press,2016.
[13]FAN M,QIANG Z,CHANG E,et al.Transition-based knowledge graph embedding with relational mapping properties[C]//Proc. of PACLIC.2014.
[14]XIAO H,HUANG M L,HAO Y,et al.TransA:An adaptiveapproach for knowledge graph embedding [J/OL].[2015-09-28].https://arxiv.org/pdf/1509.05490.pdf.
[15]NICKEL M,TRESP V,KRIEGEL H P.A Three-Way Modelfor Collective Learning on Multi-Relational Data[C]//Proc of ICML 2011.New York,USA:ACM,2011:809-816.
[16]BORDES A,GLOROT X,WESTON J,et al.A semantic matching energy function for learning with multi-relational data[J].Machine Learning,2014,94(2):233-259.
[17]SOCHER R,CHEN D,MANNING C D,et al.Reasoning with neural tensor networks for knowledge base completion[C]//Proc of NIPS 2013.Cambridge,MA:MIT Press,2013:926-934.
[18]BOLLACKER K,EVANS C,PARITOSH P,et al.Freebase:acollaboratively created graph database for structuring human knowledge[C]// Sigmod Conference.2008.
[19]KINGMA D,BA J.Adam:A method for stochastic optimization [J/OL].[2017-01-30].https://arxiv.org/pdf/1412.6980.pdf.
[20]BORDES A,WESTON J,COLLOBERT R,et al.Learningstructured embeddings of knowledge bases[C]//Proc. of AAAI 2011.Menlo Park,CA:AAAI,2011:301-306.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 吴子仪, 李邵梅, 姜梦函, 张建朋.
基于自注意力模型的本体对齐方法
Ontology Alignment Method Based on Self-attention
计算机科学, 2022, 49(9): 215-220. https://doi.org/10.11896/jsjkx.210700190
[3] 孔世明, 冯永, 张嘉云.
融合知识图谱的多层次传承影响力计算与泛化研究
Multi-level Inheritance Influence Calculation and Generalization Based on Knowledge Graph
计算机科学, 2022, 49(9): 221-227. https://doi.org/10.11896/jsjkx.210700144
[4] 宋杰, 梁美玉, 薛哲, 杜军平, 寇菲菲.
基于无监督集群级的科技论文异质图节点表示学习方法
Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level
计算机科学, 2022, 49(9): 64-69. https://doi.org/10.11896/jsjkx.220500196
[5] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[6] 秦琪琦, 张月琴, 王润泽, 张泽华.
基于知识图谱的层次粒化推荐方法
Hierarchical Granulation Recommendation Method Based on Knowledge Graph
计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111
[7] 王杰, 李晓楠, 李冠宇.
基于自适应注意力机制的知识图谱补全算法
Adaptive Attention-based Knowledge Graph Completion
计算机科学, 2022, 49(7): 204-211. https://doi.org/10.11896/jsjkx.210400129
[8] 马瑞新, 李泽阳, 陈志奎, 赵亮.
知识图谱推理研究综述
Review of Reasoning on Knowledge Graph
计算机科学, 2022, 49(6A): 74-85. https://doi.org/10.11896/jsjkx.210100122
[9] 邓凯, 杨频, 李益洲, 杨星, 曾凡瑞, 张振毓.
一种可快速迁移的领域知识图谱构建方法
Fast and Transmissible Domain Knowledge Graph Construction Method
计算机科学, 2022, 49(6A): 100-108. https://doi.org/10.11896/jsjkx.210900018
[10] 杜晓明, 袁清波, 杨帆, 姚奕, 蒋祥.
军事指控保障领域命名实体识别语料库的构建
Construction of Named Entity Recognition Corpus in Field of Military Command and Control Support
计算机科学, 2022, 49(6A): 133-139. https://doi.org/10.11896/jsjkx.210400132
[11] 黄璞, 杜旭然, 沈阳阳, 杨章静.
基于局部正则二次线性重构表示的人脸识别
Face Recognition Based on Locality Regularized Double Linear Reconstruction Representation
计算机科学, 2022, 49(6A): 407-411. https://doi.org/10.11896/jsjkx.210700018
[12] 熊中敏, 舒贵文, 郭怀宇.
融合用户偏好的图神经网络推荐模型
Graph Neural Network Recommendation Model Integrating User Preferences
计算机科学, 2022, 49(6): 165-171. https://doi.org/10.11896/jsjkx.210400276
[13] 钟将, 尹红, 张剑.
基于学术知识图谱的辅助创新技术研究
Academic Knowledge Graph-based Research for Auxiliary Innovation Technology
计算机科学, 2022, 49(5): 194-199. https://doi.org/10.11896/jsjkx.210400195
[14] 李勇, 吴京鹏, 张钟颖, 张强.
融合快速注意力机制的节点无特征网络链路预测算法
Link Prediction for Node Featureless Networks Based on Faster Attention Mechanism
计算机科学, 2022, 49(4): 43-48. https://doi.org/10.11896/jsjkx.210800276
[15] 朱敏, 梁朝晖, 姚林, 王翔坤, 曹梦琦.
学术引用信息可视化方法综述
Survey of Visualization Methods on Academic Citation Information
计算机科学, 2022, 49(4): 88-99. https://doi.org/10.11896/jsjkx.210300219
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!