计算机科学 ›› 2020, Vol. 47 ›› Issue (3): 103-109.doi: 10.11896/jsjkx.190500183
李太松1,2,贺泽宇1,2,王冰1,2,颜永红1,2,3,唐向红4
LI Tai-song1,2,HE Ze-yu1,2,WANG Bing1,2,YAN Yong-hong1,2,3,TANG Xiang-hong4
摘要: 针对循环神经网络(Recurrent Neural Network,RNN)模型在序列流推荐中只能从宏观上捕捉序列的演变模式,忽略了物品(Item)间内部的微观联系,无法长程建模序列数据的变化规律的问题,提出了多维度序列建模算法循环时间卷积网络(Recurrent Temporal Convolutional Network,RTCN)。首先,将每个物品表示成定长向量,采用多层因果卷积和扩张卷积操作扩大感受野范围,建立序列元素间的长程依赖关系。利用残差连接网络提取不同层次的特征信息,解决反向传播中梯度衰减甚至消失的问题。综合设计时间卷积网络(Temporal Convolutional Network,TCN)提取序列流中前后物品间的局部特征,将物品信息映射到隐藏空间,得到细粒度的特征向量。为进一步建立元素间的宏观联系,将特征向量依次输入门限循环单元(Gated Recurrent Unit,GRU),迭代更新现有隐藏状态并预测下一时刻的输出。RTCN通过时间卷积网络,从输入序列流提取出长时间、多维度、细粒度的局部关联特征;经过门限循环网络,建模序列间的长距离依赖关系,捕捉序列元素的演变模式,并预测下一个出现的物品。利用网站、手机应用和音乐3个不同场景中的数据对模型进行了实验。实验结果显示,RTCN模型在召回率(Recall)和平均排序倒数(MRR)两个指标上比RNN模型高出6%~13%,比传统推荐算法高出9%~59%。通过对比不同的损失函数,模型在交叉熵损失函数下表现最优。此外,由于TCN中的卷积层具有多通道的结构,当数据维度丰富时,该模型对物品和用户的上下文信息具有很强的综合能力。
中图分类号:
[1]HIDASI B,KARATZOGLOU A,BALTRUNAS L,et al.Session-based recommendations with recurrent neural networks[J].arXiv:1511.06939,2015. [2]RUMELHART D E,HINTON G E,WILLIAMS R J.Learning representations by back-propagating errors[J].Nature,1986,323(6088):399-421. [3]KOREN Y,BELL R,VOLINSKY C.Matrix factorization tech- niques for recommender systems[J].Computer,2009,42(8):30-37. [4]WEIMER M,KARATZOGLOU A.Cofi rank-maximum margin matrix factorization for collaborative ranking[C]∥Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems.2008:1593-1600. [5]HIDASI B,TIKK D.Fast ALS-Based tensor factorization for context-aware recommendation from implicit feedback[C]∥Joint European Conference on Machine Learning and Knowledge Discovery in Databases.Berlin:Springer,2012:67-82. [6]SARWAR B,KARYPIS G,KONSTAN J,et al.Item-based collaborative filtering recommendation algorithms[C]∥International Conference on World Wide Web.ACM,2001:285-295. [7]KOREN Y.Factorization meets theneighborhood:a multifaceted collaborative filtering model[C]∥ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2008:426-434. [8]HIDASI B,QUADRANA M,TIKK D.Parallel recurrent neural network architectures for feature-rich session-based recommendations[C]∥ACM Conference on Recommender Systems.ACM,2016:241-248. [9]BOGINA V,KUFLIK T.Incorporating dwell time in session- based recommendations with recurrent Neural networks [C]∥CEUR Workshop Proceedings.2017:57-59. [10]QUADRANA M,KARATZOGLOU A,HIDASI B,et al.Personalizing session-based recommendations with hierarchical recurrent neural networks[C]∥Eleventh ACM Conference on Recommender Systems.ACM,2017:130-137. [11]BAI S,KOLTER J Z,KOLTUN V.An empirical evaluation of generic convolutional and recurrent networks for sequence mo- deling [J].arXiv:1803.01271,2018. [12]LIANG M,HU X.Recurrent convolutional neural network for object recognition[C]∥Computer Vision and Pattern Recognition.IEEE,2015:3367-3375. [13]PINHEIRO P H O,COLLOBERT R.Recurrent convolutional neural networks for scene labeling[C]∥InternationalConfe-rence on International Conference on Machine Learning.2014:82-90. [14]LÉCUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [15]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]∥IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer So-ciety,2015:3431-3440. [16]HE K,ZHANG X,REN S,et al.Deep residual learning for ima- ge recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2016:770-778. [17]SALIMANS T,KINGMA D P.Weight normalization:A simple reparameterization to accelerate training of deep neural networks[C]∥Advances in Neural Information Processing Systems.2016:901-909. [18]CHUNG J,GULCEHRE C,CHO K H,et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[J].arXiv:1412.3555,2014. [19]BEN-SHIMON D,TSIKINOVSKY A,FRIEDMANN M,et al.Recsys challenge 2015 and the yoochoose dataset[C]∥RecSys’15:Proceedings of the 9th ACM Conference on Recommender Systems.New York:ACM,2015:357-358. [20]CHO E,MYERS S A,LESKOVEC J.Friendship and mobility:user movement in locationbased social networks[C]∥Procee-dings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2011:1082-1090. [21]CELMA O.Music Recommendation and Discovery in the Long Tail[M].Springer,2010. |
[1] | 李亚男, 胡宇佳, 甘伟, 朱敏. 基于深度学习的miRNA靶位点预测研究综述[J]. 计算机科学, 2021, 48(1): 209-216. |
[2] | 王瑞平, 贾真, 刘畅, 陈泽威, 李天瑞. 基于DeepFM的深度兴趣因子分解机网络[J]. 计算机科学, 2021, 48(1): 226-232. |
[3] | 于文家, 丁世飞. 基于自注意力机制的条件生成对抗网络[J]. 计算机科学, 2021, 48(1): 241-246. |
[4] | 仝鑫, 王斌君, 王润正, 潘孝勤. 面向自然语言处理的深度学习对抗样本综述[J]. 计算机科学, 2021, 48(1): 258-267. |
[5] | 丁钰, 魏浩, 潘志松, 刘鑫. 网络表示学习算法综述[J]. 计算机科学, 2020, 47(9): 52-59. |
[6] | 庄世杰, 於志勇, 郭文忠, 黄昉菀. 基于Zoneout的跨尺度循环神经网络及其在短期电力负荷预测中的应用[J]. 计算机科学, 2020, 47(9): 105-109. |
[7] | 何鑫, 许娟, 金莹莹. 行为关联网络:完整的变化行为建模[J]. 计算机科学, 2020, 47(9): 123-128. |
[8] | 叶亚男, 迟静, 于志平, 战玉丽, 张彩明. 基于改进CycleGan模型和区域分割的表情动画合成[J]. 计算机科学, 2020, 47(9): 142-149. |
[9] | 邓良, 许庚林, 李梦杰, 陈章进. 基于深度学习与多哈希相似度加权实现快速人脸识别[J]. 计算机科学, 2020, 47(9): 163-168. |
[10] | 游兰, 韩雪薇, 何正伟, 肖丝雨, 何渡, 潘筱萌. 基于改进Seq2Seq的短时AIS轨迹序列预测模型[J]. 计算机科学, 2020, 47(9): 169-174. |
[11] | 暴雨轩, 芦天亮, 杜彦辉. 深度伪造视频检测技术综述[J]. 计算机科学, 2020, 47(9): 283-292. |
[12] | 袁野, 和晓歌, 朱定坤, 王富利, 谢浩然, 汪俊, 魏明强, 郭延文. 视觉图像显著性检测综述[J]. 计算机科学, 2020, 47(7): 84-91. |
[13] | 王文刀, 王润泽, 魏鑫磊, 漆云亮, 马义德. 基于堆叠式双向LSTM的心电图自动识别算法[J]. 计算机科学, 2020, 47(7): 118-124. |
[14] | 刘燕, 温静. 基于注意力机制的复杂场景文本检测[J]. 计算机科学, 2020, 47(7): 135-140. |
[15] | 张志扬, 张凤荔, 谭琪, 王瑞锦. 基于深度学习的信息级联预测方法综述[J]. 计算机科学, 2020, 47(7): 141-153. |
|