计算机科学 ›› 2020, Vol. 47 ›› Issue (4): 103-107.doi: 10.11896/jsjkx.190700177
赵楠, 皮文超, 许长桥
ZHAO Nan, PI Wen-chao, XU Chang-qiao
摘要: 近年来,抖音、快手、微视等短视频APP取得了巨大成功,用户拍摄并上传到APP平台上的视频数量暴增。在这种信息过载的环境下,为用户挖掘并推荐其感兴趣的视频成为了视频发布平台面临的难题,因此为这些平台设计高效的视频推荐算法显得尤其重要。文中针对媒体大数据挖掘和推荐领域的数据集稀疏性高和规模巨大的问题,提出一种面向多维特征分析过滤的视频推荐算法。首先,从用户行为和视频标签等多个维度对视频进行特征提取,然后进行相似性分析,加权计算视频相似度,从而获取相似视频候选集,并对相似视频候选集进行过滤,再通过排序选择评分最高的若干个视频推荐给用户。最后,基于MovieLens公开数据集,使用python3语言实现了文中提出的视频推荐算法。在数据集上进行的大量实验表明,相比传统的协同过滤算法,文中提出的面向多维特征分析过滤的视频推荐算法将推荐结果的准确率提升了6%,召回率提升了4%,覆盖率提升了18%。实验数据充分说明,从多个维度考虑视频之间的相似性,并配合大规模矩阵分解技术,在一定程度上缓解了数据集稀疏性高、数据量巨大的难题,从而有效地提高了推荐结果的准确性、召回率和覆盖率。
中图分类号:
[1]ZHENG L S,YANG S Q,HE J,et al.An optimized collaborative filtering recommendation algorithm[C]//2016 2nd International Conference on Cloud Computing and Internet of Things (CCIOT).Dalian,IEEE,2016:89-92. [2]ZHAN M F,LI L,HUANG Q M,et al.Cross-media retrieval with semantics clustering and enhancement[C]//2017 IEEE International Conference on Multimedia and Expo (ICME).Hong Kong,China,IEEE,2017:1398-1403. [3]BRADLEY K,SMYTH B.Improving recommendation diversity [C]// Proceedings of the Twelfth Irish Conference on Artificial Intelligence and Cognitive Science.Irish:AICS,2001:85-94. [4]SU L Y,CHEN X B.Improvement of user-based collaborative filtering algorithms[J].Computer Engineering & Software,2017(4):135-140. [5]HU Y,PENG Q,HU X,et al.Time Aware and Data Sparsity Tolerant Web Service Recommendation Based on Improved Collaborative Filtering[J].IEEE Transactions on Services Computing,2015,8(5):782-794. [6]WANG X M,ZHANG X M,WU Y T,et al.Collaborative filtering recommendation algorithm based on heuristic clustering model and category similarity [J].Journal of Electronic Science,2016,44 (7):1708-1713. [7]KUMAR Y,SHARMA A,KHAUND A,et al.IceBreaker:Solving Cold Start Problem for Video Recommendation Engines[C]//2018 IEEE International Symposium on Multimedia (ISM).IEEE,2018:217-222. [8]PATRA B K,LAUNONEN R,OLLIKAINEN V,et al.Exploiting bhattacharyya similarity measure to diminish user cold-start problem in sparse data[M]//Discovery Science.Cham:Springer,2014:252-263. [9]HUANG C G,YIN J,WANG J,et al.Uncertain neighbors collaborative filtering recommendation algorithm[J].Chinese Journal of Computers,2010,33(8):1369-1377. [10]HE Y,YANG S,JIAO C,et al.A Hybrid Collaborative Filtering Recommendation Algorithm for Solving the Data Sparsity[C]// 2011 International Symposium on Computer Science and Society.2011:118-121. [11]WANG P,YE H W.A Personalized Recommendation Algorithm Combining Slope One Scheme and User Based Collaborative Filtering [C]// 2009 International Conference on Industrial and Information Systems.2009:152-154. [12]CACHEDA F,FORMOSO V.Comparison of collaborative filtering algorithms:Limitations of current techniques and proposals for scalable,high -performance recommender systems [J].ACM Transactions on the Web,2011,5(1):1-33. [13]DESHPANDE M,KARYPIS G.Item-based top-N recommendation algorithms[J].ACM Transactionon Information Systems,2004,22(1):143-177. [14]WANG P,QIAN Q,SHANG Z,et al.An recommendation algorithm based on weighted Slope one algorithm and user-based collaborative filtering [C]// 2016 Chinese Control and Decision Conference (CCDC).2016:2431-2434. [15]ZARZOUR H,AL-SHARIF Z,AL-AYYOUB M,et al.A new collaborative filtering recommendation algorithm based on dimensionality reduction and clustering techniques [C]// 2018 9th International Conference on Information and Communication Systems (ICICS).2018:102-106. [16]ARORA S,GOEL S.Improving the Accuracy of Recommender Systems Through Annealing[J].Lecture Notes in Networks and Systems,2017,1(1):295-304. [17]KOREN Y,BELL R,VOLINSKY C.Matrix Factorization Techniques for Recommender Systems[J].Computer,2009,42(8):30-37. [18]SHEUGH L,ALIZADEH S H.A note on pearson correlation coefficient as a metric of similarity in recommender system [C]// 2015 AI & Robotics (IRANOPEN).2015:1-6. |
[1] | 刘洋, 金忠. 一种结合非局部和多区域注意力机制的细粒度图像识别方法[J]. 计算机科学, 2021, 48(1): 197-203. |
[2] | 马理博, 秦小麟. 话题-位置-类别感知的兴趣点推荐[J]. 计算机科学, 2020, 47(9): 81-87. |
[3] | 暴雨轩, 芦天亮, 杜彦辉. 深度伪造视频检测技术综述[J]. 计算机科学, 2020, 47(9): 283-292. |
[4] | 汪亮, 周新志, 严华. 基于GPU的实时SIFT算法[J]. 计算机科学, 2020, 47(8): 105-111. |
[5] | 梁正友, 何景琳, 孙宇. 一种用于微表情自动识别的三维卷积神经网络进化方法[J]. 计算机科学, 2020, 47(8): 227-232. |
[6] | 杨威超, 郭渊博, 李涛, 朱本全. 基于流量指纹的物联网设备识别方法和物联网安全模型[J]. 计算机科学, 2020, 47(7): 299-306. |
[7] | 骆佳磊, 孟利民. 基于路口相似度的信号配时方案推荐算法[J]. 计算机科学, 2020, 47(6A): 66-69. |
[8] | 蓝章礼, 申德兴, 曹娟, 张玉欣. 一种基图像提取和内容无关图像重构方法研究[J]. 计算机科学, 2020, 47(6A): 226-229. |
[9] | 周立鹏, 孟利民, 周磊, 蒋维, 董建平. 基于BP神经网络的摔倒检测算法[J]. 计算机科学, 2020, 47(6A): 242-246. |
[10] | 袁得嵛, 章逸钒, 高见, 孙海春. 基于用户特征提取的新浪微博异常用户检测方法[J]. 计算机科学, 2020, 47(6A): 364-368. |
[11] | 郑纯军, 王春立, 贾宁. 语音任务下声学特征提取综述[J]. 计算机科学, 2020, 47(5): 110-119. |
[12] | 卢爱红, 郭艳, 李宁, 王萌, 刘杰. 基于原子范数最小化的二维稀疏阵列波达角估计算法[J]. 计算机科学, 2020, 47(5): 271-276. |
[13] | 邓一姣, 张凤荔, 陈学勤, 艾擎, 余苏喆. 面向跨模态检索的协同注意力网络模型[J]. 计算机科学, 2020, 47(4): 54-59. |
[14] | 朱磊, 胡沁涵, 赵雷, 杨季文. 基于评分偏好和项目属性的协同过滤算法[J]. 计算机科学, 2020, 47(4): 67-73. |
[15] | 王昆仑, 刘文璨, 何小海, 卿粼波, 吴晓红. 一种用于异常行为检测的运动特征描述子[J]. 计算机科学, 2020, 47(4): 119-124. |
|