计算机科学 ›› 2020, Vol. 47 ›› Issue (9): 163-168.doi: 10.11896/jsjkx.190900118

• 计算机图形学&多媒体 • 上一篇    下一篇

基于深度学习与多哈希相似度加权实现快速人脸识别

邓良1, 许庚林1, 李梦杰1, 陈章进1,2   

  1. 1 上海大学微电子研究与开发中心 上海200444
    2 上海大学计算机中心 上海200444
  • 收稿日期:2019-09-18 发布日期:2020-09-10
  • 通讯作者: 陈章进(zjchen@shu.edu.cn)
  • 作者简介:1593481663@qq.com
  • 基金资助:
    国家自然科学基金(61674100)

Fast Face Recognition Based on Deep Learning and Multiple Hash Similarity Weighting

DENG Liang1, XU Geng-lin1, LI Meng-jie1, CHEN Zhang-jin1,2   

  1. 1 Microelectronics Research and Development Center,Shanghai University,Shanghai 200444,China
    2 Computer Center,Shanghai University,Shanghai 200444,China
  • Received:2019-09-18 Published:2020-09-10
  • About author:DENG Liang,born in 1996,master.His main research interests include digital chip design,deep learning,and face recognition.
    CHEN Zhang-jin,born in 1969,doctor,professor.His main research interests include digital chip design,large-screen LED display research and development.
  • Supported by:
    National Natural Science Foundation of China (61674100).

摘要: 无论是使用传统的方法进行人脸识别,还是使用神经网络进行人脸识别,都存在运算量大、运算时间长等问题,很难对视频中的人脸进行实时检测与匹配。针对上述问题,使用轻量化神经网络进行人脸检测,使用运算简单的哈希算法计算人脸图像相似度,并对多个哈希相似度值加权进行人脸匹配,是减少运算时间、实现快速人脸识别的可行方案。使用轻量化神经网络Mobilenet作为人脸特征提取网络,使用剪枝的SSD模型作为检测网络,通过级联Mobilenet与SSD实现人脸的检测,之后对检测到的人脸图像进行识别。首先,分别计算人脸图像的均值哈希相似度与感知哈希相似度。然后,分别使用αβ作为均值哈希与感知哈希的加权系数对图像的均值哈希与感知哈希相似度值进行加权,并将结果作为图像的最终相似度。当加权后的相似度值大于设定的阈值I时,则认为两张图像中的人脸是同一个人;当加权后的相似度值小于设定的阈值K时,则认为两张图像中的人脸是不同的人。对于相似度处于阈值I和阈值K之间的图像,将它们按照相似度值从高到低的顺序择优匹配。所提方法在WiderFace和FDDB上的人脸检测准确率分别达到92.5%和94.2%,每张图片的平均处理时间为56ms;在ORL标准人脸库进行人脸匹配的准确率达到96.2%。使用摄像头进行实时人脸识别测试时,所提方法的人脸识别准确率为95%,平均人脸识别速度为80ms。实验证明,所提方法在保证较高准确率的前提下,能够实现实时的人脸检测与匹配。

关键词: 哈希算法, 人脸检测, 人脸匹配, 深度学习

Abstract: Whether using the traditional method or neural network for face recognition,there are problems of large computation and long computation time.It is difficult to detect and match the faces in the video in real time.Aiming at the above problems,lightweight neural network is used for face detection,simple hash algorithm is used to calculate the similarity of face images,and multiple hash similarity values are weighted for face matching.It is a feasible scheme to reduce computation time and realize fast face recognition.The lightweight neural network Mobilenet is used as the face feature extraction network,and the pruned SSD model is used as the detection network.The face detection is realized by cascading Mobilenet and SSD,and then the detected face image is recognized.Firstly,the mean hash similarity and the perceived hash similarity of the face images are calculated separately.Then,taking α and β as weighted coefficients of the mean hash and the perceived hash respectively,the mean hash and perceived hash similarity value of the image are weighted,and the result is taken as the final similarity of the image.When the weighted similarity value is greater than the set threshold I,it is considered to be the same person.When the weighted similarity value is less than the set threshold K,it is considered to be a different person.For images whose similarity is between thresholds I and K,they are optimally matched in order of similarity values from high to low.The face detection accuracy rate of the proposed method on WiderFace and FDDB reaches 92.5% and 94.2% respectively,and the average processing time per image is 56ms.The accuracy of face matching in the ORL standard face database reaches 96.2%.When camera is used for real-time face recognition test,the face recognition accuracy of the proposed method is 95%,and the average face recognition speed is 80ms.It has been proved by experiments that real-time face detection and matching can be realized under the premise of ensuring high accuracy.

Key words: Deep learning, Face detection, Face matching, Hash algorithm

中图分类号: 

  • TP183
[1] JIANG R D,CHU W,YAN J.Intelligent recognition system for face recognition under ARM platform[J].Computer Engineering and Design,2018,39(2):590-595.
[2] BUHMANN J,LADES M,MALSBURG C V D.Size and distortion invariant object recognition by hierarchical graph matching[C]//International Joint Conference on Neural Networks.1990:416-441.
[3] SONG J,CHEN B,CHI Z,et al.Face Recognition Based on Binary Template Matching[C]//Third International Conference on Intelligent Computing(ICIC 2007).Springer-Verlag,2007.
[4] SHAN S,GAO W,ZHAO D.Face recognition based on face-specific subspace[J].International Journal of Imaging Systems &Technology,2010,13(1):23-32.
[5] DAVE P,AGARWAL J,METTA T.Face Detection using Principal Component Analysis (PCA)[J].International Journal of Computer Applications,2014,95(17):37-40.
[6] RANGSEE P,RAJA K B,VENUGOPAL K R.Modified Local Ternary Pattern Based Face Recognition Using SVM[C]//2018 International Conference on Intelligent Informatics and Biome-dical Sciences (ICIIBMS).2018.
[7] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:TowardsReal-Time Object Detection with Region Proposal Networks[C]//International Conference on Neural Information Processing Systems.2015.
[8] REDMON J,DIVVALA S,GIRSHICK R,et al.You Only Look Once:Unified,Real-Time Object Detection[J].arXiv:1506.02640,2015.
[9] LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single ShotMultiBox Detector[J].arXiv:1512.02325,2015.
[10] SIMONYAN K,ZISSER,AN A.Very Deep Convolutional Networks for Large-Scale Image Recognition[J].arXiv:1409.1556v6,2014.
[11] HUANG J H,LI X W,CHEN B H,et al.Comparative Study of Image Similarity Algorithm Based on Hash[J].Journal of Dali University,2017,12(2):32-37.
[12] YIN Y M,PENG Y,QI J H.Research on the Image Similarity Retrieval Algorithm Based on Double Hash[J].Information and Communications Technologies,2019,13(1):33-38.
[13] DENG J,ZHOU B,SHI Y L.Application of Improved Image Hash Algorithm in Image Tamper Detection[C]//2018 International Conference on Intelligent Transportation,Big Data & Smart City (ICITBS).IEEE Computer Society,2018.
[14] HOWARD A G,ZHU M,CHEN B,et al.MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Applications[J].arXiv:1704.04861,2017.
[15] VIOLA P,JONES M J.Robust Real-Time Face Detection[J].International Journal of Computer Vision,2004,57(2):137-154.
[16] YAN J X,YIN J X.Multi-pose face detection based on face feature and AdaBoost algorithm[J].Journal of Computer Applications,2010,30(4):967-970.
[17] AHONEN T,HADID A,PIETIKAINEN M.Face Description with Local Binary Patterns:Application to Face Recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(12):2037-2041.
[18] YANG B,YAN J,LEI Z,et al.Aggregate channel features for multi-view face detection[C]//IEEE International Joint Confe-rence on Biometrics.2014:1-8.
[19] GHIASI G,FOWLKES C C.Occlusion Coherence:LocalizingOccluded Faces with a Hierarchical Deformable Part Model[C]//Computer Vision & Pattern Recognition.2014.
[20] LI Q Y,JI Q G,HONG S D.FastFace:Real-time robust face detection algorithm[J].Journal of Image and Graphics,2019,24(10):1761-1771.
[21] ZHANG K,ZHANG Z,LI Z,et al.Joint Face Detection andAlignment Using Multitask Cascaded Convolutional Networks[J].IEEE Signal Processing Letters,2016,23(10):1499-1503.
[22] YANG S,LUO P,LOY C C,et al.Faceness-Net:Face Detection through Deep Facial Part Responses[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(8):1845-1859.
[23] ZHOU X Y,WANG W,LI L Y.Overview of Target Detection Algorithm Based on Deep Learning[J].Electronic Measurement Technology,2017,40(11):89-93.
[24] MARCETIC D,HRKAC T,Slobodan Ribaric.Two-stage cascade model for unconstrained face detection[C]//2016 First International Workshop on Sensing,Processing and Learning for Intelligent Machines (SPLINE).IEEE,2016.
[25] ZHANG J L,WU X W,ZHU J K.Feature Agglomeration Networks for Single Stage Face Detection[J].arxiv:1712.00721,2017.
[26] LI E,WEN Z S,ZHANG Y L,et al.Face recognition systembased on OpenCV and mean hash algorithm[J].Industrial Design,2016(8):132-133.
[27] WANG A C,CHEN H T.Robust Perceptual Image Hashing Technique Based on Discrete Cosine Transform[J].China Safety Science Journal,2009,19(4):91.
[28] WANG C,KAO W H,HSIAO C K.Using Hamming Distance as Information for SNP-Sets Clustering and Testing in Disease Association Studies[J].Plos One,2015,10(8):e0135918.
[29] REN J J,WANG N.Study on the Loss Function in Artificial Neural Networks[J].Journal of Gansu Normal University,2018,23(2):65-67.
[30] RIBEIRO R,FEITOSA A R S,DE SOUZA R E,et al.Reconstruction of electrical impedance tomography images using genetic algorithms and non-blind search[C]//2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI 2014).IEEE,2014.
[31] ZHANG W X,LIANG Y.The Mathematical Foundation of Genetic Algorithm[J].Journal of Xi’an Jiaotong University,2000,34(10):6.
[32] GAO H K,MA S N.Research on Fast Face AuthenticationTechnology Based on ORL Database[J].Science & Technology Communication,2014,16(12):89-92.
[33] NGUYEN H V,BAI L.Cosine Similarity Metric Learning for Face Verification[C]//Computer Vision-ACCV 2010-10th Asian Conference on Computer Vision.Queenstown,New Zealand,2010.
[34] RAGHAVENDRA R,VENKATESH S,RAJA K B,et al.Mutual Information Based Multispectral Image Fusion for Improved Face Recognition[C]//2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS).IEEE,2016.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[3] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[4] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[5] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[6] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[7] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[8] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[9] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[10] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[11] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[12] 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫.
小样本雷达辐射源识别的深度学习方法综述
Survey of Deep Learning for Radar Emitter Identification Based on Small Sample
计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138
[13] 祝文韬, 兰先超, 罗唤霖, 岳彬, 汪洋.
改进Faster R-CNN的光学遥感飞机目标检测
Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN
计算机科学, 2022, 49(6A): 378-383. https://doi.org/10.11896/jsjkx.210300121
[14] 王建明, 陈响育, 杨自忠, 史晨阳, 张宇航, 钱正坤.
不同数据增强方法对模型识别精度的影响
Influence of Different Data Augmentation Methods on Model Recognition Accuracy
计算机科学, 2022, 49(6A): 418-423. https://doi.org/10.11896/jsjkx.210700210
[15] 毛典辉, 黄晖煜, 赵爽.
符合监管合规性的自动合成新闻检测方法研究
Study on Automatic Synthetic News Detection Method Complying with Regulatory Compliance
计算机科学, 2022, 49(6A): 523-530. https://doi.org/10.11896/jsjkx.210300083
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!