计算机科学 ›› 2020, Vol. 47 ›› Issue (11A): 6-10.doi: 10.11896/jsjkx.191000147
张伟, 于成龙
ZHANG Wei, YU Cheng-long
摘要: 为解决航天复材车间以经验为主的排产实时性和实用性不够的问题,提出了智能排产系统并讨论了智能排产系统的体系架构和功能组成,研究了基于感知信息的排产计算方法,开发了航天复材车间智能排产原型系统并进行了校验。该系统能够根据生产实时数据和排产知识,自动判断并进行资源优化配置和工序工时计算,并根据生产扰动情况执行重排产及输出排产方案,为企业排产方案的制定提供了依据,并为后续工程化智能排产系统的开发奠定了基础。
中图分类号:
[1] LIU Y H,MA J,MOU J H,et al.Dynamic sequencing of mix-model assembly line oriented to rush orders[J].Computer Integrated Manufacturing System,2017,23(12):2647-2656. [2] KU W Y,BECK J C.Mixed integer programming models for job shop scheduling:A computational analysis[J].Computers & Operations Research,2016(73):165-173. [3] ZHANG Y F,YANG T,WANG J Q,et al.Intelligent navigation of assembly activities based on real-time manufacturing information[J].Computer Integrated Manufacturing System,2014,20(1):28-36. [4] FAN H L,XIONG H G,JIANG G Z,et al.Survey of dispatching rules for dynamic Job-Shop scheduling problem[J].Journal of Computer Applications,2016,33(3):648-653. [5] FRAMINA J M,PEREZ-GONZALEZ P.New approximate algorithms for the customer order scheduling problem with total completion time objective[J].Computers & Operations Research,2017(78):181-192. [6] AHMADI E,ZANDIEH M,FARROKH M,et al.A multi objective optimization approach for flexible job shop scheduling problem under random machine breakdown by evolutionary algorithms[J].Computers & Operations Research,2016(73):56-66. [7] WANG L,DENG J,WANG S Y.Survey on optimization algorithms for distributed shop scheduling[J].Control and Decision,2016,31(1):1-11. [8] ZAHMANI M,ATMANI B.A data mining based dispatchingrules selection system for the job shop scheduling problem[J].Journal of Advanced Manufacturing Systems,2019,18(1):35-56. [9] SHOKOUHI E.Integrated multi-objective process planning and flexible job shop scheduling considering precedence constraints[J].Journal Production & Manufacturing Research,2018,69(1):61-89. [10] BÜRG Y,REINHAR D.A neighborhood for complex job shopscheduling problems with regular objectives[J].Journal of Scheduling,2017,20(4):391-422. [11] SUN Q Q,DING M.Research on intelligent service scheduling scheduling in aviation compound production workshop[J].Intelligent Manufacturing,2017(12):39-43. [12] WANG Q B,ZHANG W X,WANG B L,et al.Research on Agent-based Hybrid Flow Shop Dynamic Scheduling Problem[J].Journal of Computer Applications,2017,37(10):2991-2998. [13] MIRKO K,JENS E,MICHAEL F,et al.A data-driven simulation-based optimisation approach for adaptive scheduling and control of dynamic manufacturing systems[J].Advanced Materials Research,2016(1140):449-456. [14] BARENJI A V,BARENJI R V,ROUDI D,et al.A dynamic multi-agent-based scheduling approach for SMEs[J].The International Journal of Advanced Manufacturing Technology,2017(89):3123-3137. [15] NASIRI M M,YAZDANPARAST R,JOLAI F.A simulation optimisation approach for real-time scheduling in an open shop environment using a composite dispatching rule[J].International Journal of Computer Integrated Manufacturing,2017,30(12):1239-1252. |
[1] | 熊丽琴, 曹雷, 赖俊, 陈希亮. 基于值分解的多智能体深度强化学习综述 Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization 计算机科学, 2022, 49(9): 172-182. https://doi.org/10.11896/jsjkx.210800112 |
[2] | 刘兴光, 周力, 刘琰, 张晓瀛, 谭翔, 魏急波. 基于边缘智能的频谱地图构建与分发方法 Construction and Distribution Method of REM Based on Edge Intelligence 计算机科学, 2022, 49(9): 236-241. https://doi.org/10.11896/jsjkx.220400148 |
[3] | 胡玉姣, 贾庆民, 孙庆爽, 谢人超, 黄韬. 融智算力网络及其功能架构 Functional Architecture to Intelligent Computing Power Network 计算机科学, 2022, 49(9): 249-259. https://doi.org/10.11896/jsjkx.220500222 |
[4] | 宁晗阳, 马苗, 杨波, 刘士昌. 密码学智能化研究进展与分析 Research Progress and Analysis on Intelligent Cryptology 计算机科学, 2022, 49(9): 288-296. https://doi.org/10.11896/jsjkx.220300053 |
[5] | 王子凯, 朱健, 张伯钧, 胡凯. 区块链与智能合约并行方法研究与实现 Research and Implementation of Parallel Method in Blockchain and Smart Contract 计算机科学, 2022, 49(9): 312-317. https://doi.org/10.11896/jsjkx.210800102 |
[6] | 袁唯淋, 罗俊仁, 陆丽娜, 陈佳星, 张万鹏, 陈璟. 智能博弈对抗方法:博弈论与强化学习综合视角对比分析 Methods in Adversarial Intelligent Game:A Holistic Comparative Analysis from Perspective of Game Theory and Reinforcement Learning 计算机科学, 2022, 49(8): 191-204. https://doi.org/10.11896/jsjkx.220200174 |
[7] | 史殿习, 赵琛然, 张耀文, 杨绍武, 张拥军. 基于多智能体强化学习的端到端合作的自适应奖励方法 Adaptive Reward Method for End-to-End Cooperation Based on Multi-agent Reinforcement Learning 计算机科学, 2022, 49(8): 247-256. https://doi.org/10.11896/jsjkx.210700100 |
[8] | 黄松, 杜金虎, 王兴亚, 孙金磊. 以太坊智能合约模糊测试技术研究综述 Survey of Ethereum Smart Contract Fuzzing Technology Research 计算机科学, 2022, 49(8): 294-305. https://doi.org/10.11896/jsjkx.220500069 |
[9] | 傅丽玉, 陆歌皓, 吴义明, 罗娅玲. 区块链技术的研究及其发展综述 Overview of Research and Development of Blockchain Technology 计算机科学, 2022, 49(6A): 447-461. https://doi.org/10.11896/jsjkx.210600214 |
[10] | 高健博, 张家硕, 李青山, 陈钟. RegLang:一种面向监管的智能合约编程语言 RegLang:A Smart Contract Programming Language for Regulation 计算机科学, 2022, 49(6A): 462-468. https://doi.org/10.11896/jsjkx.210700016 |
[11] | 卫宏儒, 李思月, 郭涌浩. 基于智能合约的秘密重建协议 Secret Reconstruction Protocol Based on Smart Contract 计算机科学, 2022, 49(6A): 469-473. https://doi.org/10.11896/jsjkx.210700033 |
[12] | 李荪, 曹峰. 智能语音技术端到端框架模型分析和趋势研究 Analysis and Trend Research of End-to-End Framework Model of Intelligent Speech Technology 计算机科学, 2022, 49(6A): 331-336. https://doi.org/10.11896/jsjkx.210500180 |
[13] | 王钰珏, 梁宇豪, 王素琴, 朱登明, 石敏. 机械零件加工工艺本体库构建 Construction of Ontology Library for Machining Process of Mechanical Parts 计算机科学, 2022, 49(6A): 661-666. https://doi.org/10.11896/jsjkx.210800013 |
[14] | 谢万城, 李斌, 代玥玥. 空中智能反射面辅助边缘计算中基于PPO的任务卸载方案 PPO Based Task Offloading Scheme in Aerial Reconfigurable Intelligent Surface-assisted Edge Computing 计算机科学, 2022, 49(6): 3-11. https://doi.org/10.11896/jsjkx.220100249 |
[15] | 周天清, 岳亚莉. 超密集物联网络中多任务多步计算卸载算法研究 Multi-Task and Multi-Step Computation Offloading in Ultra-dense IoT Networks 计算机科学, 2022, 49(6): 12-18. https://doi.org/10.11896/jsjkx.211200147 |
|