计算机科学 ›› 2020, Vol. 47 ›› Issue (10): 55-62.doi: 10.11896/jsjkx.200500154

• 群智感知计算 • 上一篇    下一篇

基于雾计算和自评估的VANET聚类与协作感知

刘丹   

  1. 大连东软信息学院物联网工程系 辽宁 大连116023
  • 收稿日期:2020-05-29 修回日期:2020-07-21 出版日期:2020-10-15 发布日期:2020-10-16
  • 通讯作者: 刘丹(liudan_j@neusoft.edu.cn)
  • 基金资助:
    国家自然科学基金(61772101);辽宁省自然科学基金(20180550021);大连市科技计划项目(2017RQ021)

Fog Computing and Self-assessment Based Clustering and Cooperative Perception for VANET

LIU Dan   

  1. Department of Internet of Things Engineering,Dalian Neusoft Information University,Dalian,Liaoning 116023,China
  • Received:2020-05-29 Revised:2020-07-21 Online:2020-10-15 Published:2020-10-16
  • About author:LIU Dan,born in 1982,master,asso-ciate professor.Her main researchinterests include Internet of vehicle,crowd sensing and Internet of Things data processing.
  • Supported by:
    National Natural Science Foundation of China (61772101),Natural Science Foundation of Liaoning Province (20180550021) and Dalian Science and Technology Plan Project (2017RQ021)

摘要: 集群是提高车联网群智感知质量和降低成本的有效方法,但如何在车辆高机动性的同时提高集群稳定性是一个具有挑战性的问题。基于VANET(Vehicular Ad-Hoc Network)的通信特点,文中提出了基于雾计算和自评估的VANET聚类算法FCSAC(Fog Computing and Self-Assessment Clustering),将VANET分为多个集群,集群内车辆协作感知结果由主簇头(Master Cluster Head,MCH)发给雾节点;引入车辆移动率(Velocity Mobility Rate,VMR)来改进簇头选举方法,该参数是根据移动性指标来计算的,以满足VANET动态变化的需求;通过定义缩放函数和加权机制来量化评估车辆的加入对集群稳定性的影响。同时,选举辅助群头(Slave Cluster Head,SCH)来增强集群的稳定性。其次,为提高拥堵区域感知的准确性,在雾计算的基础上通过主簇头间的有序链式协作交通态势感知,形成局部交通态势感知准确、全面的视图。最后,使用Veins车联网仿真平台评估所提算法的性能。结果表明,与CBRSDN(Cluster based Routing for Sparse and Dense Networks)算法和SACBR(Self-Assessment Cluster based Routing)算法相比,所提算法在集群稳定性方面表现优越,并且有效提高了VANET的吞吐量;与FCM(Fuzzy C-Means)算法相比,其交通分流能力更好,并减少了网络通信的消耗。

关键词: 车联网, 群智感知, 集群, 雾计算, 协作感知, 车载自组织网络

Abstract: Clustering is an effective method to improve the perception quality of Vehicular Crowd Sensing (VCS) and reduce costs.However,how to maximize the cluster stability while accounting for the high mobility of vehicles remains a challenging problem.Based on the communication characteristics of VANET,a clustering algorithm based on Fog Computing and Self-Assessment (FCSAC) is proposed,which divides VANET into many clusters,and each cluster selects a Master Cluster Head(MCH) for data dissemination.The results of vehicle cooperative perception in the cluster are given to the fog nodes by MCH,the vehicle mobility rate (VMR) is introduced to improve Master Cluster Head(MCH) election method,this parameter is calculated based on mobility metrics to satisfy the need for VANET great mobility.Then,this paper evaluates the impact of vehicle joining on cluster stability by defining scaling functions and weighting mechanisms.FCSAC strengthens clusters’ stability through the election of a Slave Cluster Head (SCH) in addition to the MCH.In order to improve the accuracy,timeliness,and effectiveness of traffic information,on the basis of fog computing,via chain collaboration traffic perception between the MCH,an accurate and comprehensive view of the local traffic perception is formed.Finally,the Veins simulation platform is used to eva-luate the performance.The results show that,compared with the CBRSDN algorithm and SACBR algorithm,the proposed algorithm performs better in terms of cluster stability,and effectively improves the throughput of VANET.Compared with the Fuzzy C-Means (FCM) algorithm,it has better traffic diversion capability and reduces the consumption of network communication.

Key words: Internet of vehicles, Crowd sensing, Clustering, Fog computing, Cooperative perception, Vehicular-hoc networks

中图分类号: 

  • TP393
[1]BHOI S K,KHILAR P M.Vehicular communication:a survey[J].IET Networks,2014,3(3):204-217.
[2]KATIYAR A,SINGH D,YADAV S.State-of-the-art approach to clustering protocols in VANET:a survey[J].Wireless Networks,2020:220-232.
[3]CHEN H H,GUO B,YU Z W.Research on the Method to Collect High-quality Crowdsourced Data in Open Mode[J].Journal of Chinese Systems,2020,41(1):78-84.
[4]XIANG B,GUO B,SHI L,et al.A New Affinity Propagation Clustering Algorithm for V2V-Supported VANETs[J].IEEE Access,2020,8:71405-71421.
[5]MAMMU K,JIRU J,JAYO H.Cluster Based Semantic DataAggregation in VANETs[C]//2015 IEEE 29th International Conference on Advanced Information Networking and Applications.2015:747-754.
[6]QURESHI N,IDREES M,LLORET J,et al.Self-Assessment based Clustering Data Dissemination for Sparse and Dense Traffic Conditions for Internet of Vehicles[J].IEEE Access,2020,8:10363-10463.
[7]ALSARHAN A,KILANI Y,AL-DUBAI A,et al.Novel Fuzzy and Game Theory Based Clustering and Decision Making for VANETs[J].IEEE Transactions on Vehicular Technology,2020,69(2):1568-1581.
[8]UCAR S,ERGEN S C,OZKASAP O.Multihop-Cluster-BasedIEEE 802.11p and LTE Hybrid Architecture for VANET Safety Message Dissemination[J].IEEE Transactions on Vehicular Technology,2016,65(4):2621-2636.
[9]DUAN X,LIU Y,WANG X.SDN Enabled 5G-VANET:Adaptive Vehicle Clustering and Beamformed Transmission for Aggregated Traffic[J].IEEE Communications Magazine,2017,55(7):120-127.
[10]MALATHI A,SREENATH N.An Efficient Clustering Algo-rithm for Vanet[J].International Journal of Applied Engineering Research,2017,12(9):2000-2005.
[11]SENOUCI O,ALIOUAT Z,HAROUS S.MCA-V2I:A Multi-hop Clustering Approach over Vehicle-to-Internet communication for improving VANETs performances[J].Future Generation Computer Systems,2019,96:309-323.
[12]YU C,LIN B,GUO P,et al.Deployment and dimensioning of fog computing-based internet of vehicle infrastructure for autonomous driving[J].IEEE Internet of Things Journal,2019,6(1):149-160.
[13]AAZAMM,HUH E.Fog computing and smart gateway basedcommunication for cloud of things[C]//International Conference on Future Internet of Things and Cloud.2014:464-470.
[14]LAI Y,LIN H,YANG F,et al.Efficient data request answering in vehicular Ad-hoc networks based on fog nodes and filters[J].Future Generation Computer Systems,2019,93:130-142.
[15]LAMB Z,AGRAWAL D.Analysis of mobile edge computing for vehicular networks[J].Sensors,2019,9:1303-1323.
[16]WANG B,CHANG Z,ZHOU Z,et al.Reliable and Privacy-Preserving Task Recomposition for Crowdsensing in Vehicular Fog Computing[C]//2018 IEEE 87th Vehicular Technology Conference (VTC Spring).Porto,2018:1-6.
[17]HE H,XIANG C C,XIAO S C.Survey on Crowd-Sensing Networks[J].Journal of Jilin University (Information Science Edition),2016,34(3):374-383.
[18]BANIKHALAF M,KHDER A.A Simple and Robust Clustering Scheme for Large-Scale and Dynamic VANETs[J].IEEE Access,2020,8:103565-103575.
[19]XUE L L,FAN X M.Cognitive Spectrum Allocation Mechanism in Internet of Vehicles Based on Clustering Structure[J].Computer Science,2019,46(9):143-149.
[20]WANG R M,DENG X F,XU Z G.Survey on simulation testing and evaluation of Internet of vehicles[J].Application Research of Computers,2019,36(7):1921-1939.
[21]MOHANTY A,MAHAPATRA S,BHANJA U.Traffic con-gestion detection in a city using clustering techniques in VANETs[J].Indonesian Journal of Electrical Engineering and Computer Science,2019,13(3):884-891.
[22]LI J L,YUAN Q,YANG F C.Crowd Sensing and Service in Internet of VehicIes[J].ZTE Technology Journal,2015,21(6):6-9.
[1] 于天琪, 胡剑凌, 金炯, 羊箭锋. 基于移动边缘计算的车载CAN网络入侵检测方法[J]. 计算机科学, 2021, 48(1): 34-39.
[2] 崔翔, 李晓雯, 陈一峯. 基于新型语言机制的异构集群应用通信优化方法[J]. 计算机科学, 2020, 47(8): 17-15.
[3] 李建军, 汪校铃, 杨玉, 付佳. 基于CQPSO移动群智感知紧急任务分配方法研究[J]. 计算机科学, 2020, 47(6A): 273-277.
[4] 葛雨明, 韩庆文, 王妙琼, 曾令秋, 李璐. 汽车大数据应用模式与挑战分析[J]. 计算机科学, 2020, 47(6): 59-65.
[5] 刘世芳, 赵永华, 于天禹, 黄荣锋. 广义稠密对称特征问题标准化算法在GPU集群上的有效实现[J]. 计算机科学, 2020, 47(4): 6-12.
[6] 赵楠,章国安. VANET中基于无证书环签密的可认证隐私保护方案[J]. 计算机科学, 2020, 47(3): 312-319.
[7] 王春东, 罗婉薇, 莫秀良, 杨文军. 车联网互信认证与安全通信综述[J]. 计算机科学, 2020, 47(11): 1-9.
[8] 熊玲, 李发根, 刘志才. 车联网环境下基于区块链技术的条件隐私消息认证方案[J]. 计算机科学, 2020, 47(11): 55-59.
[9] 蔡威, 白光伟, 沈航, 成昭炜, 张慧丽. 移动群智感知中基于强化学习的双赢博弈[J]. 计算机科学, 2020, 47(10): 41-47.
[10] 薛玲玲, 樊秀梅. 基于分簇结构的车联网认知频谱分配机制[J]. 计算机科学, 2019, 46(9): 143-149.
[11] 翟书颖, 李茹, 李波, 郝少阳. 视觉群智感知应用综述[J]. 计算机科学, 2019, 46(6A): 11-15.
[12] 李卓, 徐哲, 陈昕, 李淑琴. 面向移动群智感知的位置相关在线多任务分配算法[J]. 计算机科学, 2019, 46(6): 102-106.
[13] 王青龙, 乔瑞, 段宗涛. 针对车联网认证方案CPAV和ABV的安全分析[J]. 计算机科学, 2019, 46(4): 177-182.
[14] 王卓昊, 杨冬菊, 徐晨阳. 基于ISE算法的分布式ETL任务调度策略研究[J]. 计算机科学, 2019, 46(12): 1-7.
[15] 程显毅, 施佺, 朱建新, 陈凤妹, 代冉冉. 大数据环境下的车路人协同控制模型VID[J]. 计算机科学, 2019, 46(11A): 185-188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[2] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[3] 施超,谢在鹏,柳晗,吕鑫. 基于稳定匹配的容器部署策略的优化[J]. 计算机科学, 2018, 45(4): 131 -136 .
[4] 韩奎奎,谢在鹏,吕鑫. 一种基于改进遗传算法的雾计算任务调度策略[J]. 计算机科学, 2018, 45(4): 137 -142 .
[5] 郑秀林,宋海燕,付伊鹏. MORUS-1280-128算法的区分分析[J]. 计算机科学, 2018, 45(4): 152 -156 .
[6] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[7] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[8] 朱淑芹,王文宏,李俊青. 针对基于感知器模型的混沌图像加密算法的选择明文攻击[J]. 计算机科学, 2018, 45(4): 178 -181 .
[9] 翁理国,孔维斌,夏旻,仇学飞. 基于深度极限学习机的卫星云图云量计算[J]. 计算机科学, 2018, 45(4): 227 -232 .
[10] 李小薪,李晶晶,贺霖,刘志勇. 基于噪声空间结构嵌入和高维梯度方向嵌入的鲁棒人脸识别方法[J]. 计算机科学, 2018, 45(4): 285 -290 .