计算机科学 ›› 2021, Vol. 48 ›› Issue (1): 11-15.doi: 10.11896/jsjkx.200900217

• 智能化边缘计算* 上一篇    下一篇

边缘计算中任务卸载研究综述

刘通1,2, 方璐1, 高洪皓1   

  1. 1 上海大学计算机工程与科学学院 上海 200444
    2 上海智能计算系统工程技术研究中心 上海 200444
  • 收稿日期:2020-09-30 修回日期:2020-12-09 出版日期:2021-01-15 发布日期:2021-01-15
  • 通讯作者: 高洪皓(gaohonghao@shu.edu.cn)
  • 作者简介:tong_liu@shu.edu.cn
  • 基金资助:
    国家自然科学基金青年项目(61802245);上海市“科技创新行动计划”青年科技英才扬帆计划(18YF1408200)

Survey of Task Offloading in Edge Computing

LIU Tong1,2, FANG Lu1, GAO Hong-hao1   

  1. 1 School of Computer Engineering and Science,Shanghai University,Shanghai 200444,China
    2 Shanghai Engineering Research Center of Intelligent Computing System,Shanghai 200444,China
  • Received:2020-09-30 Revised:2020-12-09 Online:2021-01-15 Published:2021-01-15
  • About author:LIU Tong,born in 1990,Ph.D,assistant professor,is a member of China Computer Federation.Her main research interests include edge computing,wireless networks and urban computing.
    GAO Hong-hao,born in 1985,Ph.D,distinguished professor,is a senior member of China Computer Federation.His main research interests include software formal verification,service computing,wireless networks and intelligent medical image processing.
  • Supported by:
    Young Scientists Fund of the National Natural Science Foundation of China(61802245) and Shanghai Sailing Program (18YF1408200).

摘要: 近年来,随着移动智能设备的普及以及5G等无线通信技术的发展,边缘计算作为一种新兴的计算模式被提出,作为传统的云计算模式的扩展与补充。边缘计算的基本思想是将移动设备上产生的计算任务从卸载到云端转变为卸载到网络边缘端,从而满足实时在线游戏、增强现实等计算密集型应用对低延迟的要求。边缘计算中的计算任务卸载是一个关键的研究问题,即计算任务应在本地执行还是卸载到边缘节点或云端。不同的任务卸载方案对任务完成时延和移动设备能耗都有着较大的影响。文中首先介绍了边缘计算的基本概念,归纳了边缘计算的几种系统架构。随后,详细阐述了边缘计算中的计算任务卸载问题。基于对任务卸载方案研究的必要性与挑战的分析,对现有的相关研究工作进行了全面的综述和总结,并对未来的研究方向进行了展望。

关键词: 边缘计算, 任务卸载, 资源分配, 任务延迟, 能量消耗

Abstract: Recently,with the popularization of mobile smart devices and the development of wireless communication technologies such as 5G,edge computing is proposed as a novel and promising computing mode,which is regarded as an extension of traditional cloud computing.The basic idea of edge computing is to transferm the computing tasks generated on mobile devices from offloading to remote clouds to offloading to the edge of the network,to meet the low-latency requirements of computing-intensive applications such as real online game and augmented reality.The offloading problem of computing tasks in edge computing is an important issue that studies whether computing tasks should be performed locally or offloaded to edge nodes or remote clouds,since it has a big impact on task completion delay and energy consumption of devices.This paper firstly explains the basic concepts of edge computing and introduces several system architectures of edge computing.Then,it expounds the task offloading problem in edge computing.Considering the research necessity and difficulty of task offloading in edge computing,it comprehensively reviews the existing related works and discusses the future research directions.

Key words: Edge computing, Task offloading, Resource allocation, Task delay, Energy consumption

中图分类号: 

  • TP393
[1] SATYANARAYANAN M.The Emergence of Edge Computing[J].Computer,2017,50(1):30-39.
[2] SHI W S,SUN H,CAO J,et al.Edge Computing:An Emerging Computing Model for the Internet of Everything Era[J].Journal of Computer Research and Development,2017,54(5):907-924.
[3] HE T.Talking About a Brief Aanalysis of the Current Situation and Challenges of Edge Computing Technology[C]//Procee-dings of the 34th China (Tianjin) 2020'IT,Network,Information Technology,Electronics,Instrumentation Innovation Academic Conference.2020.
[4] DINH T Q,TANG J,LA Q D,et al.Offloading in Mobile Edge Computing:Task Allocation and Computational Frequency Scaling[J].IEEE Transactions on Communications,2017,65(8):3571-3584.
[5] LI Q.An Actor-Critic Reinforcement Learning Method for Computation Offloading with Delay Constraints in Mobile Edge Computing[J].arXiv:1901.10646,2019.
[6] WU H M,SUN Y,WOLTER K.Energy-Efficient DecisionMaking for Mobile Cloud Offloading[J].IEEE Transactions on Cloud Computing,2020,8(2):570-584.
[7] HAN Z H,TAN H S,LI X Y,et al.OnDisc:Online Latency-Sensitive Job Dispatching and Scheduling in Heterogeneous Edge-Clouds[J].IEEE/ACM Transactions on Networking,2019,PP(99):1-14.
[8] SUN Y,ZHOU S,XU J.EMM:Energy-aware mobility management for mobile edge computing in ultra dense networks[J].IEEE Journal on Selected Areas in Communications,2017,35(11):2637-2646.
[9] JOILOSLAANA,DÁNGYRGY.Computation Offloading Sche-duling for Periodic Tasks in Mobile Edge Computing[J].IEEE/ACM Transactions on Networking,2020,28(2):667-680.
[10] TANG L,HE S.Multi-user computation offloading in mobile edge computing:A behavioral perspective[J].IEEE Network,2018,32(1):48-53.
[11] YI C Y,CAI J,SU Z.A Multi-User Mobile Computation Offloading and Transmission Scheduling Mechanism for Delay-Sensitive Applications[J].IEEE Transactions on Mobile Computing,2020,19(1):29-43.
[12] XU J,CHEN L,ZHOU P.Joint Service Caching and Task Offloading for Mobile Edge Computing in Dense Networks[C]// IEEE Infocom-ieee Conference on Computer Communications.IEEE,2018.
[13] ZENG Y,HUANG Y,LIU Z,et al.Joint Online Edge Caching and Load Balancing for Mobile Data Offloading in 5G Networks[C]// 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS).IEEE,2019.
[14] WANG C,LIANG C,YU F R,et al.Computation offloading andresource allocation in wireless cellular networks with mobile edge computing[J].IEEE Transactions on Wireless Communications,2017,16(8):4924-4938.
[15] GAO B,ZHOU Z,LIU F,et al.Winning at the starting line:Joint network selection and service placement for mobile edge computing[C]//IEEE INFOCOM 2019-IEEE Conference on Computer Communications.IEEE,2019:1459-1467.
[16] PU L,JIAO L,CHEN X,et al.Online Resource Allocation,Content Placement and Request Routing for Cost-Efficient Edge Caching in Cloud Radio Access Networks[J].IEEE Journal on Selected Areas in Communications,2018,36(8):1751-1767.
[17] SHU C,ZHAO Z,HAN Y,et al.Multi-User Offloading forEdge Computing Networks:A Dependency-Aware and Latency-Optimal Approach[J].IEEE Internet of Things Journal,2019,7(3):1678-1689.
[18] ZHANG K,MAO Y,LENG S,et al.Energy-Efficient Offloading for Mobile Edge Computing in 5G Heterogeneous Networks[J].IEEE Access,2016,4:5894-5907.
[19] YOU C,HUANG K,CHAE H,et al.Energy-Efficient Resource Allocation for Mobile-Edge Computation Offloading[J].IEEE Transactions on Wireless Communications,2017,16(3):1397-1411.
[20] MAO Y,ZHANG J,LETAIEF K B.Dynamic Computation Offloading for Mobile-Edge Computing with Energy Harvesting Devices[J].IEEE Journal on Selected Areas in Communications,2016,34(12):3590-3605.
[21] ZHANG Q,GUI L,HOU F,et al.Dynamic Task Offloading and Resource Allocation for Mobile Edge Computing in Dense Cloud RAN[J].IEEE Internet of Things Journal,2020,7(4):3282-3299.
[22] ZHAO P,TIAN H,QIN C,et al.Energy-Saving Offloading by Jointly Allocating Radio and Computational Resources for Mobile Edge Computing[J].IEEE Access,2017,5:11255-11268.
[23] TRAN T X,POMPILI D.Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks[J].arXiv:1705.00704v1,2017.
[24] ESHRAGHI N,LIANG B.Joint Offloading Decision and Re-source Allocation with Uncertain Task Computing Requirement[C]// IEEE INFOCOM 2019-IEEE Conference on Computer Communications.IEEE,2019.
[25] CHEN M,HAO Y.Task offloading for mobile edge computing in software defined ultra-dense network[J].IEEE Journal on Selected Areas in Communications,2018,36(3):587-597.
[26] HUANG L,FENG X,QIAN L,et al.Deep reinforcement lear-ning-based task offloading and resource allocation for mobile edge computing[C]//International Conference on Machine Learning and Intelligent Communications.Springer,Cham,2018:33-42.
[27] YANG Z,PAN C,HOU J,et al.Efficient Resource Allocation for Mobile-Edge Computing Networks with NOMA:Completion Time and Energy Minimization[J].IEEE Transactions on Communications,2019,67(11):7771-7784.
[28] NOURI N,ABOUEI J,JASEEMUDDIN M,et al.Joint Access and Resource Allocation in Ultradense mmWave NOMA Networks With Mobile Edge Computing[J].IEEE Internet of Things Journal,2020,7(2):1531-1547.
[29] SHIBIN D,KATHRINE G J W.A comprehensive overview on secure offloading in mobile cloud computing[C]// 4th International Conference on Electronics and Communication Systems(ICECS).IEEE,2017:121-124.
[30] Edge Computing Consortium,Alliance of Industrial Internet.The architecture of edge computing 2.0[R].Beijing:Alliance of Industrial Internet,2017.
[31] YANG W,FUNG C.A survey on security in network functions virtualization[C]//IEEE NetSoft Conference and Workshops(NetSoft).IEEE,2016:15-19.
[32] MCMAHAN H B,MOORE E,RAMAGE D,et al.Federatedlearning of deep networks using model averaging[J].arXiv:1602.05629,2016.
[1] 李辉, 李秀华, 熊庆宇, 文俊浩, 程路熙, 邢镔. 边缘计算助力工业互联网:架构、应用与挑战[J]. 计算机科学, 2021, 48(1): 1-10.
[2] 梁俊斌, 田凤森, 蒋婵, 王天舒. 物联网中多设备多服务器的移动边缘计算任务卸载技术综述[J]. 计算机科学, 2021, 48(1): 16-25.
[3] 于天琪, 胡剑凌, 金炯, 羊箭锋. 基于移动边缘计算的车载CAN网络入侵检测方法[J]. 计算机科学, 2021, 48(1): 34-39.
[4] 马堉银, 郑万波, 马勇, 刘航, 夏云霓, 郭坤银, 陈鹏, 刘诚武. 一种基于深度强化学习与概率性能感知的边缘计算环境多工作流卸载方法[J]. 计算机科学, 2021, 48(1): 40-48.
[5] 毛莺池, 周彤, 刘鹏飞. 基于延迟接受的多用户任务卸载策略[J]. 计算机科学, 2021, 48(1): 49-57.
[6] 唐文君, 刘岳, 陈荣. 移动边缘计算中的动态用户分配方法[J]. 计算机科学, 2021, 48(1): 58-64.
[7] 余雪勇, 陈涛. 边缘计算场景中基于虚拟映射的隐私保护卸载算法[J]. 计算机科学, 2021, 48(1): 65-71.
[8] 高基旭, 王珺. 一种基于遗传算法的多边缘协同计算卸载方案[J]. 计算机科学, 2021, 48(1): 72-80.
[9] 杨紫淇, 蔡英, 张皓晨, 范艳芳. 基于负载均衡的VEC服务器联合计算任务卸载方案[J]. 计算机科学, 2021, 48(1): 81-88.
[10] 单美静, 秦龙飞, 张会兵. L-YOLO:适用于车载边缘计算的实时交通标识检测模型[J]. 计算机科学, 2021, 48(1): 89-95.
[11] 郦睿翔, 毛莺池, 郝帅. 基于近似匹配的移动边缘计算缓存管理方法[J]. 计算机科学, 2021, 48(1): 96-102.
[12] 郭飞雁, 唐兵. 基于用户延迟感知的移动边缘服务器放置方法[J]. 计算机科学, 2021, 48(1): 103-110.
[13] 王国澎, 杨剑新, 尹飞, 蒋生健. 负载均衡的处理器运算资源分配方法[J]. 计算机科学, 2020, 47(8): 41-48.
[14] 赵明. 边缘计算技术及应用综述[J]. 计算机科学, 2020, 47(6A): 268-272.
[15] 胡锦天, 王高才, 徐晓桐. 移动边缘计算中具有能耗优化的任务迁移策略[J]. 计算机科学, 2020, 47(6): 260-265.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[2] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[3] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[4] 郭帅,刘亮,秦小麟. 用户偏好约束的空间关键词范围查询处理方法[J]. 计算机科学, 2018, 45(4): 182 -189 .
[5] 崔建京,龙军,闵尔学,于洋,殷建平. 同态加密在加密机器学习中的应用研究综述[J]. 计算机科学, 2018, 45(4): 46 -52 .
[6] 李小薪,李晶晶,贺霖,刘志勇. 基于噪声空间结构嵌入和高维梯度方向嵌入的鲁棒人脸识别方法[J]. 计算机科学, 2018, 45(4): 285 -290 .
[7] 李键红,吴亚榕,吕巨建. 基于组稀疏表示的在线单帧图像超分辨率算法[J]. 计算机科学, 2018, 45(4): 312 -318 .
[8] 胡雅鹏, 丁维龙, 王桂玲. 一种面向异构大数据计算框架的监控及调度服务[J]. 计算机科学, 2018, 45(6): 67 -71 .
[9] 吴伟男, 刘建明. 面向低功耗无线传感器网络的动态重传算法[J]. 计算机科学, 2018, 45(6): 96 -99 .
[10] 郭莹莹, 张丽平, 李松. 障碍环境中线段组最近邻查询方法研究[J]. 计算机科学, 2018, 45(6): 172 -175 .