计算机科学 ›› 2022, Vol. 49 ›› Issue (6A): 1-11.doi: 10.11896/jsjkx.210400056

• 智慧医疗 • 上一篇    下一篇

指静脉识别技术研究综述

刘伟业, 鲁慧民, 李玉鹏, 马宁   

  1. 长春工业大学计算机科学与工程学院 长春 130102
  • 出版日期:2022-06-10 发布日期:2022-06-08
  • 通讯作者: 鲁慧民(luhuimin@ccut.edu.cn)
  • 作者简介:(liuweiyede@163.com)
  • 基金资助:
    吉林省科技厅2020年度吉林省科技发展计划项目重点研发项目(20200401103GX)

Survey on Finger Vein Recognition Research

LIU Wei-ye, LU Hui-min, LI Yu-peng, MA Ning   

  1. School of Computer Science and Engineering,Changchun University of Technology,Changchun 130102,China
  • Online:2022-06-10 Published:2022-06-08
  • About author:LIU Wei-ye,born in 1995,postgraduate,is a member of China Computer Federation.His main research interests include image recognition and deep learning.
    LU Hui-min,born in 1972,Ph.D,professor,Ph.D supervisor,is a member of China Computer Federation.Her main research interests include intelligent data processing and biometric authentication.
  • Supported by:
    Key Research and Development Program of Jilin Provincial Science and Technology Development Plan in 2020(20200401103GX).

摘要: 指静脉识别因其具有活体识别、高安全性、内部特征等技术优势,已成为生物特征识别领域的研究热点之一。文中首先阐述了指静脉识别技术的基本原理及研究现状,然后针对指静脉识别过程中的主要技术,包括图像采集、传统识别方法中的图像预处理、特征提取、特征匹配,以及基于深度学习的指静脉识别,结合相关理论研究逐阶段展开论述,并对代表性的识别算法进行了概括、分析和评述。此外,全面梳理并详细介绍了指静脉识别领域常用的公开数据集,以及识别系统的相关技术评价指标,总结了指静脉识别研究尚存的主要问题,并提出了可行的解决方案,最后对指静脉识别未来的研究方向进行了展望,为后续指静脉识别的发展提供研究思路。

关键词: 深度学习, 生物特征识别, 特征提取, 图像处理, 指静脉识别

Abstract: Finger vein recognition has become one of the most popular research hotpots in the field of biometrics because of its unique technical advantages such as living body recognition,high security and inner features.Firstly,this paper introduces the principle,merits,and current research status of finger vein recognition,then making the time as the clue,sorts out the development history of finger vein recognition technology,and discusses the classical and state-of-the-art recognition algorithms.Secondly,focusing on each process of finger vein recognition,this paper expounds on the critical techniques including image acquisition,image preprocessing,feature extraction and matching in traditional methods,and deep learning-based recognition.Besides,the commonly used public datasets and the related evaluation metrics in this field are introduced.Thirdly,this paper summarizes the existing research problems,proposes the corresponding feasible solutions,and predicts the future research direction of finger vein recognition.Some new ideas in the following studies for researchers are provided at the end.

Key words: Biometrics, Deep learning, Feature extraction, Finger vein recognition, Image processing

中图分类号: 

  • TP391
[1] MOAYER B,FU K S.A Tree System Approach for Fingerprint Pattern Recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(3):376-387.
[2] TURK M,PENTLAND A.Eigenfaces for Recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86.
[3] WILDES R P,ASMUTH J C,GREEN G L,et al.A System for Automated Iris Recognition[C]//Proceedings of IEEE Workshop on Applications of Computer Vision.Sarasota,FL,USA:IEEE Computer Society,1994:121-128.
[4] LEE E C,LEE H C,PARK K R.Finger Vein Recognition using Minutia-Based Alignment and Local Binary Pattern-Based Feature Extraction[J].International Journal of Imaging Systems and Technology,2009,19(3):179-186.
[5] RICE A J.A Quality Approach to Biometric Imaging[C]//Proceedings of IEE Colloquium on Image Processing for Biometric Measurement.London,UK:Institution of Engineering and Technology,1994:1-5.
[6] KONO M.A New Method for the Identification of Individuals by using of Vein Pattern Matching of a Finger[C]//Proceedings of Fifth Symposium on Pattern Measurement.Yamaguchi,Japan,2000:9-12.
[7] KONO M,UEKI H,UMEMURA S.Near-Infrared Finger Vein Patterns for Personal Identification[J].Applied Optics,2002,41(35):7429-7436.
[8] MIURA N,NAGASAKA A,MIYATAKE T.Feature Extrac-tion of Finger-Vein Patterns Based on Repeated Line Tracking and its Application to Personal Identification[J].Machine Vision and Applications,2004,15(4):194-203.
[9] MIURA N,NAGASAKA A,MIYATAKE T.Extraction of Fin-ger-Vein Patterns using Maximum Curvature Points in Image Profiles[J].IEICE Transactions on Information and Systems,2007,90(8):1185-1194.
[10] SONG W,KIM T,KIM H C,et al.A Finger-Vein Verification System using Mean Curvature[J].Pattern Recognition Letters,2011,32(11):1541-1547.
[11] ASAARI M S M,SUANDI S A,ROSDI B A.Fusion of BandLimited Phase Only Correlation and Width Centroid Contour Distance for Finger Based Biometrics[J].Expert Systems with Applications,2014,41(7):3367-3382.
[12] VLACHOS M,DERMATAS E.Finger Vein Segmentationfrom Infrared Images Based on a Modified Separable Mumford Shah Model and Local Entropy Thresholding[J].Computational and Mathematical Methods in Medicine,2015,2015(1):1-20.
[13] RADZI S A,HANI M K,BAKHTERI R.Finger-Vein Biometric Identification using Convolutional Neural Network[J].Turkish Journal of Electrical Engineering & Computer Sciences,2016,24(3):1863-1878.
[14] DAS R,PICIUCCO E,MAIORANA E,et al.ConvolutionalNeural Network for Finger-Vein-Based Biometric Identification[J].IEEE Transactions on Information Forensics and Security,2018,14(2):360-373.
[15] NOH K J,CHOI J,HONG J S,et al.Finger-Vein Recognition Based on Densely Connected Convolutional Network using Score-Level Fusion with Shape and Texture Images[J].IEEE Access,2020,8(1):96748-96766.
[16] LIN X R,ZHUANG B,SU X S,et al.Measurement and Matching of Human Vein Pattern Characteristics[J].Journal of Tsinghua University(Science and Technology),2003,43(2):164-167.
[17] YU C B,QIN H F.Research on Finger Vein Image Feature Extraction Algorithm[J].Computer Engineering and Application,2008,44(24):175-177.
[18] WANG K J,LIU J Y,LI X F.Finger Vein Recognition Algorithm Based on Relative Distance[J].Computer Science,2011,38(9):257-259,270.
[19] YANG L,YANG G,YIN Y,et al.Sliding Window-Based Region of Interest Extraction for Finger Vein Images[J].Sensors,2013,13(3):3799-3815.
[20] YANG G,XIAO R,YIN Y,et al.Finger Vein Recognition Based on Personalized Weight Maps[J].Sensors,2013,13(9):12093-12112.
[21] YANG J,SHI Y,JIA G.Finger-Vein Image Matching Based on Adaptive Curve Transformation[J].Pattern Recognition,2017,66(1):34-43.
[22] KANG W,LU Y,LI D,et al.From Noise to Feature:Exploiting Intensity Distribution as a Novel Soft Biometric Trait for Finger Vein Recognition[J].IEEE Transactions on Information Forensics and Security,2018,14(4):858-869.
[23] YANG S,QIN H,LIU X,et al.Finger-Vein Pattern Restoration with Generative Adversarial Network[J].IEEE Access,2020,8(1):141080-141089.
[24] MENG X,ZHENG J,XI X,et al.Finger Vein Recognition Basedon Zone-Based Minutia Matching[J].Neurocomputing,2021,423(1):110-123.
[25] HU H,KANG W,LU Y,et al.FV-Net:Learning A Finger-Vein Feature Representation Based on a CNN[C]//Proceedings of 24th IEEE International Conference on Pattern Recognition(ICPR).Los Alamitos,CA,USA:IEEE Computer Society,2018:3489-3494.
[26] LU Y,XIE S,WU S.Exploring Competitive Features using Deep Convolutional Neural Network for FingerVein Recognition[J].IEEE Access,2019,7(1):35113-35123.
[27] ZHAO D,MA H,YANG Z,et al.Finger Vein RecognitionBased on Lightweight CNN Combining Center Loss and Dyna-mic Regularization[J].Infrared Physics & Technology,2020,105(8):1-10.
[28] YANG J,SHI Y,YANG J.Personal Identification Based on Finger-Vein Features[J].Computers in Human Behavior,2011,27(5):1565-1570.
[29] LIU Z,SONG S.An Embedded Real-Time Finger-Vein Recognition System for Mobile Devices[J].IEEE Transactions on Consumer Electronics,2012,58(2):522-527.
[30] KAUBA C,PROMMEGGER B,UHL A.Combined Fully Contactless Finger and Hand Vein Capturing Device with a Corresponding Dataset[J].Sensors,2019,19(22):1-25.
[31] KANG W,LIU H,LUO W,et al.Study of a Full-View 3D Finger Vein Verification Technique[J].IEEE Transactions on Information Forensics and Security,2019,15(1):1175-1189.
[32] LIU Y Y.Research on Finger Vein Recognition System Basedon Micro Lens Array Ultrathin Device[D].Guangzhou:South China University of Technology,2017.
[33] HUANG Q,HU K,ZHOU P,et al.Design of Finger Vein Capturing Device Based on ARM and CMOS Array[C]//Procee-dings of 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference(IMCEC).Los Alamitos,CA,USA:IEEE Computer Society,2018:193-196.
[34] WANG M W,TANG D M,YU Y C,et al.Robust Edge Detection Method for Finger Vein Images[J].Application Research of Computers,2018,35(1):296-299.
[35] YANG J,SHI Y.Finger-Vein ROI Localization and Vein Ridge Enhancement[J].Pattern Recognition Letters,2012,33(12):1569-1579.
[36] YAO Q,SONG D,XU X.Robust Finger-Vein ROI Localization Based on the 3σ Criterion Dynamic Threshold Strategy[J].Sensors,2020,20(14):1-21.
[37] YANG J,SHI Y.Towards Finger-Vein Image Restoration and Enhancement for Finger-Vein Recognition[J].Information Scien-ces,2014,268(1):33-52.
[38] XIE S J,LU Y,YOON S,et al.Intensity Variation Normalization for Finger Vein Recognition using Guided Filter Based Singe Scale Retinex[J].Sensors,2015,15(7):17089-17105.
[39] SHIN K Y,PARK Y H,NGUYEN D T,et al.Finger-Vein Image Enhancement using a Fuzzy-Based Fusion Method with Gabor and Retinex Filtering[J].Sensors,2014,14(2):3095-3129.
[40] YOU W,ZHOU W,HUANG J,et al.A Bilayer Image Restoration for Finger Vein Recognition[J].Neurocomputing,2019,348(5):54-65.
[41] WILLIAM A,ONG T S,LAU S H,et al.Finger Vein Verification using Local Histogram of Hybrid Texture Descriptors[C]//Proceedings of IEEE International Conference on Signal and Image Processing Applications(ICSIPA).Los Alamitos,CA,USA:IEEE Computer Society,2015:304-308.
[42] LEI L,XI F,CHEN S.Finger-Vein Image Enhancement Based on Pulse Coupled Neural Network[J].IEEE Access,2019,7(99):57226-57237.
[43] LIU J K,LI Y.Enhancement on the Low Contrast Finger Vein Image Under Non-Uniform Illumination[J].Microelectronics & Computer,2012,29(12):91-93,98.
[44] WU J,HE D.Finger Vein Recognition Based on Feature Point Distance[C]//Proceedings of 3rd IEEE International Conference on Image,Vision and Computing(ICIVC).Los Alamitos,CA,USA:IEEE Computer Society,2018:163-167.
[45] LIU F,YANG G,YIN Y,et al.Singular Value Decomposition Based Minutiae Matching Method for Finger Vein Recognition[J].Neurocomputing,2014,145(5):75-89.
[46] WU J D,LIU C T.Finger-Vein Pattern Identification using Principal Component Analysis and the Neural Network Technique[J].Expert Systems with Applications,2011,38(5):5423-5427.
[47] YOU L,WANG J,LI H,et al.Finger Vein Recognition Based on 2DPCA and KMMC[J].International Journal of Signal Processing,Image Processing and Pattern Recognition,2015,8(10):163-170.
[48] ZHANG L P,LI W J,NING X,et al.A Finger Vein Recognition Method Based on Histogram of Oriented Line and(2D)2FPCA[J].Journal of Computer-Aided Design & Computer Graphics,2018,30(2):254-261.
[49] HU N,MA H,ZHAN T.Finger Vein Biometric Verificationusing Block Multi-Scale Uniform Local Binary Pattern Features and Block Two-Directional Two-Dimension Principal Component Analysis[J].Optik,2020,208(1):1-16.
[50] ROSDI B A,SHING C W,SUANDI S A.Finger Vein Recognition using Local Line Binary Pattern[J].Sensors,2011,11(12):11357-11371.
[51] LU Y,YOON S,XIE S J,et al.Finger Vein Recognition using Generalized Local Line Binary Pattern[J].KSII Transactions on Internet & Information Systems,2014,8(5):1766-1784.
[52] LIU C,WANG R C,XU X W,et al.Finger Vein RecognitionAlgorithm Based on Improved LBP[J].Computer Simulation,2019,36(1):381-386.
[53] YANG G,XI X,YIN Y.FingerVein Recognition Based on a Personalized Best Bit Map[J].Sensors,2012,12(2):1738-1757.
[54] ISMAIL B,ZMIRLI M O.Enhancement of Finger Vein Patterns Extracted by Maximum Curvature Method[C]//Proceedings of IEEE International Conference on Applied Smart Systems(ICASS).Los Alamitos,CA,USA:IEEE Computer Society,2018:1-4.
[55] LI J,MA H,LV Y,et al.Finger Vein Feature Extraction Based on Improved Maximum Curvature Description[C]//Proceedings of IEEE Chinese Control Conference(CCC).Los Alamitos,CA,USA:IEEE Computer Society,2019:7566-7571.
[56] SYARIF M A,ONG T S,TEOH A B J,et al.Enhanced Maximum Curvature Descriptors for Finger Vein Verification[J].Multimedia Tools and Applications,2017,76(5):6859-6887.
[57] ZHANG J,LU Z,LI M.Active Contour-Based Methodfor Finger-Vein Image Segmentation[J].IEEE Transactions on Instrumentation and Measurement,2020,69(11):8656-8665.
[58] CHEN G,DAI Q,TANG X,et al.An Improved Least Trimmed Square Hausdorff Distance Finger Vein Recognition[C]//Proceedings of 5th IEEE International Conference on Systems and Informatics(ICSAI).Los Alamitos,CA,USA:IEEE Computer Society,2018:939-943.
[59] HONG H G,LEE M B,PARK K R.Convolutional Neural Network-Based Finger-Vein Recognition using NIR Image Sensors[J].Sensors,2017,17(6):1-21.
[60] HUANG H,LIU S,ZHENG H,et al.Deepvein:Novel FingerVein Verification Methods Basedon Deep Convolutional Neural Networks[C]//Proceedings of IEEE International Conference on Identity,Security and Behavior Analysis(ISBA).Los Alamitos,CA,USA:IEEE Computer Society,2017:1-8.
[61] ZHANG Y,LI W,ZHANG L,et al.Adaptive Gabor Convolutional Neural Networks for Finger-Vein Recognition[C]//Proceedings of IEEE International Conference on High Performance Big Data and Intelligent Systems(HPBD&IS).Los Alamitos,CA,USA:IEEE Computer Society,2019:219-222.
[62] ZHU C,YANG Y,JANG Y.Research on Denoising of FingerVein Image Based on Deep Convolutional Neural Network[C]//Proceedings of 14th International Conference on Computer Scien-ce & Education(ICCSE).Los Alamitos,CA,USA:IEEE Computer Society,2019:374-378.
[63] HOU B,YAN R.Convolutional Auto-Encoder Based Deep Feature Learning for Finger-Vein Verification[C]//Proceedings of IEEE International Symposium on Medical Measurements and Applications(MeMeA).Los Alamitos,CA,USA:IEEE Compu-ter Society,2018:1-5.
[64] TANG S,ZHOU S,KANG W,et al.Finger Vein Verificationusing a Siamese CNN[J].IET Biometrics,2019,8(5):306-315.
[65] FANG Y,WU Q,KANG W.A Novel Finger Vein Verification System Based on Two-Stream Convolutional Network Learning[J].Neurocomputing,2018,290(1):100-107.
[66] YANG H,FANG P,HAO Z.A GAN-based Method for Generating Finger VeinDataset[C]//Proceedings of 3rd International Conference on Algorithms,Computing and Artificial Intelligence(ACAI).New York,NY,USA:Association for Computing Machinery,2020:1-6.
[67] WANG G,SUN C,SOWMYA A.Learning a Compact Vein Discrimination Model with Ganerated Samples[J].IEEE Transactions on Information Forensics and Security,2019,15(1):635-650.
[68] OU W F,PO L M,ZHOU C,et al.Fusion Loss and Inter-Class Data Augmentation for Deep Finger Vein Feature Learning[J].Expert Systems with Applications,2021,171(7):1-17.
[69] YIN Y,LIU L,SUN X.SDUMLA-HMT:A Multimodal Bio-metric Database[C]//Proceedings of Chinese Conference on Biometric Recognition.Heidelberg,Berlin:Springer,2011:260-268.
[70] TOME P,VANONI M,MARCEL S.On the Vulnerability ofFinger Vein Recognition to Spoofing[C]//Proceedings of IEEE International Conference of the Biometrics Special Interest Group(BIOSIG).Los Alamitos,CA,USA:IEEE Computer Society,2014:1-10.
[71] LU Y,XIE S J,YOON S,et al.An Available Database for the Research of Finger Vein Recognition[C]//Proceedings of 6th IEEE International Congress on Image and Signal Processing(CISP).Los Alamitos,CA,USA:IEEE Computer Society,2013:410-415.
[72] TON B T,VELDHUIS R N J.A High Quality Finger Vascular Pattern Dataset Collected using a Custom Designed Capturing Device[C]//Proceedings of IEEE International Conference on Biometrics(ICB).Los Alamitos,CA,USA:IEEE Computer Society,2013:1-5.
[73] LIU T,XIE J,YAN W,et al.Finger-Vein Pattern Restoration with Direction-Variance-Boundary Constraint Search[J].Engineering Applications of Artificial Intelligence,2015,46(1):131-139.
[74] QIN H,EL-YACOUBI M A.Deep Representation-Based Fea-ture Extraction and Recovering for Finger-Vein Verification[J].IEEE Transactions on Information Forensics & Security,2017,12(8):1816-1829.
[75] GUO X,LI D,ZHANG H,et al.Image Restoration of Finger-Vein Networks Basedon Encoder-Decoder Model[J].Optoelectronics Letters,2019,15(6):463-467.
[76] QIU X,KANG W,TIAN S,et al.Finger Vein Presentation Attack Detection using Total Variation Decomposition[J].IEEE Transactions on Information Forensics and Security,2017,13(2):465-477.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[3] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[4] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[5] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[6] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[7] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[8] 郭拯危, 付泽文, 李宁, 白澜.
高分辨率斜视聚束SAR回波仿真加速算法研究
Study on Acceleration Algorithm for Raw Data Simulation of High Resolution Squint Spotlight SAR
计算机科学, 2022, 49(8): 178-183. https://doi.org/10.11896/jsjkx.210600066
[9] 张源, 康乐, 宫朝辉, 张志鸿.
基于Bi-LSTM的期货市场关联交易行为检测方法
Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM
计算机科学, 2022, 49(7): 31-39. https://doi.org/10.11896/jsjkx.210400304
[10] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[11] 曾志贤, 曹建军, 翁年凤, 蒋国权, 徐滨.
基于注意力机制的细粒度语义关联视频-文本跨模态实体分辨
Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism
计算机科学, 2022, 49(7): 106-112. https://doi.org/10.11896/jsjkx.210500224
[12] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[13] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[14] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[15] 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫.
小样本雷达辐射源识别的深度学习方法综述
Survey of Deep Learning for Radar Emitter Identification Based on Small Sample
计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!