计算机科学 ›› 2022, Vol. 49 ›› Issue (6A): 1-11.doi: 10.11896/jsjkx.210400056
刘伟业, 鲁慧民, 李玉鹏, 马宁
LIU Wei-ye, LU Hui-min, LI Yu-peng, MA Ning
摘要: 指静脉识别因其具有活体识别、高安全性、内部特征等技术优势,已成为生物特征识别领域的研究热点之一。文中首先阐述了指静脉识别技术的基本原理及研究现状,然后针对指静脉识别过程中的主要技术,包括图像采集、传统识别方法中的图像预处理、特征提取、特征匹配,以及基于深度学习的指静脉识别,结合相关理论研究逐阶段展开论述,并对代表性的识别算法进行了概括、分析和评述。此外,全面梳理并详细介绍了指静脉识别领域常用的公开数据集,以及识别系统的相关技术评价指标,总结了指静脉识别研究尚存的主要问题,并提出了可行的解决方案,最后对指静脉识别未来的研究方向进行了展望,为后续指静脉识别的发展提供研究思路。
中图分类号:
[1] MOAYER B,FU K S.A Tree System Approach for Fingerprint Pattern Recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(3):376-387. [2] TURK M,PENTLAND A.Eigenfaces for Recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86. [3] WILDES R P,ASMUTH J C,GREEN G L,et al.A System for Automated Iris Recognition[C]//Proceedings of IEEE Workshop on Applications of Computer Vision.Sarasota,FL,USA:IEEE Computer Society,1994:121-128. [4] LEE E C,LEE H C,PARK K R.Finger Vein Recognition using Minutia-Based Alignment and Local Binary Pattern-Based Feature Extraction[J].International Journal of Imaging Systems and Technology,2009,19(3):179-186. [5] RICE A J.A Quality Approach to Biometric Imaging[C]//Proceedings of IEE Colloquium on Image Processing for Biometric Measurement.London,UK:Institution of Engineering and Technology,1994:1-5. [6] KONO M.A New Method for the Identification of Individuals by using of Vein Pattern Matching of a Finger[C]//Proceedings of Fifth Symposium on Pattern Measurement.Yamaguchi,Japan,2000:9-12. [7] KONO M,UEKI H,UMEMURA S.Near-Infrared Finger Vein Patterns for Personal Identification[J].Applied Optics,2002,41(35):7429-7436. [8] MIURA N,NAGASAKA A,MIYATAKE T.Feature Extrac-tion of Finger-Vein Patterns Based on Repeated Line Tracking and its Application to Personal Identification[J].Machine Vision and Applications,2004,15(4):194-203. [9] MIURA N,NAGASAKA A,MIYATAKE T.Extraction of Fin-ger-Vein Patterns using Maximum Curvature Points in Image Profiles[J].IEICE Transactions on Information and Systems,2007,90(8):1185-1194. [10] SONG W,KIM T,KIM H C,et al.A Finger-Vein Verification System using Mean Curvature[J].Pattern Recognition Letters,2011,32(11):1541-1547. [11] ASAARI M S M,SUANDI S A,ROSDI B A.Fusion of BandLimited Phase Only Correlation and Width Centroid Contour Distance for Finger Based Biometrics[J].Expert Systems with Applications,2014,41(7):3367-3382. [12] VLACHOS M,DERMATAS E.Finger Vein Segmentationfrom Infrared Images Based on a Modified Separable Mumford Shah Model and Local Entropy Thresholding[J].Computational and Mathematical Methods in Medicine,2015,2015(1):1-20. [13] RADZI S A,HANI M K,BAKHTERI R.Finger-Vein Biometric Identification using Convolutional Neural Network[J].Turkish Journal of Electrical Engineering & Computer Sciences,2016,24(3):1863-1878. [14] DAS R,PICIUCCO E,MAIORANA E,et al.ConvolutionalNeural Network for Finger-Vein-Based Biometric Identification[J].IEEE Transactions on Information Forensics and Security,2018,14(2):360-373. [15] NOH K J,CHOI J,HONG J S,et al.Finger-Vein Recognition Based on Densely Connected Convolutional Network using Score-Level Fusion with Shape and Texture Images[J].IEEE Access,2020,8(1):96748-96766. [16] LIN X R,ZHUANG B,SU X S,et al.Measurement and Matching of Human Vein Pattern Characteristics[J].Journal of Tsinghua University(Science and Technology),2003,43(2):164-167. [17] YU C B,QIN H F.Research on Finger Vein Image Feature Extraction Algorithm[J].Computer Engineering and Application,2008,44(24):175-177. [18] WANG K J,LIU J Y,LI X F.Finger Vein Recognition Algorithm Based on Relative Distance[J].Computer Science,2011,38(9):257-259,270. [19] YANG L,YANG G,YIN Y,et al.Sliding Window-Based Region of Interest Extraction for Finger Vein Images[J].Sensors,2013,13(3):3799-3815. [20] YANG G,XIAO R,YIN Y,et al.Finger Vein Recognition Based on Personalized Weight Maps[J].Sensors,2013,13(9):12093-12112. [21] YANG J,SHI Y,JIA G.Finger-Vein Image Matching Based on Adaptive Curve Transformation[J].Pattern Recognition,2017,66(1):34-43. [22] KANG W,LU Y,LI D,et al.From Noise to Feature:Exploiting Intensity Distribution as a Novel Soft Biometric Trait for Finger Vein Recognition[J].IEEE Transactions on Information Forensics and Security,2018,14(4):858-869. [23] YANG S,QIN H,LIU X,et al.Finger-Vein Pattern Restoration with Generative Adversarial Network[J].IEEE Access,2020,8(1):141080-141089. [24] MENG X,ZHENG J,XI X,et al.Finger Vein Recognition Basedon Zone-Based Minutia Matching[J].Neurocomputing,2021,423(1):110-123. [25] HU H,KANG W,LU Y,et al.FV-Net:Learning A Finger-Vein Feature Representation Based on a CNN[C]//Proceedings of 24th IEEE International Conference on Pattern Recognition(ICPR).Los Alamitos,CA,USA:IEEE Computer Society,2018:3489-3494. [26] LU Y,XIE S,WU S.Exploring Competitive Features using Deep Convolutional Neural Network for FingerVein Recognition[J].IEEE Access,2019,7(1):35113-35123. [27] ZHAO D,MA H,YANG Z,et al.Finger Vein RecognitionBased on Lightweight CNN Combining Center Loss and Dyna-mic Regularization[J].Infrared Physics & Technology,2020,105(8):1-10. [28] YANG J,SHI Y,YANG J.Personal Identification Based on Finger-Vein Features[J].Computers in Human Behavior,2011,27(5):1565-1570. [29] LIU Z,SONG S.An Embedded Real-Time Finger-Vein Recognition System for Mobile Devices[J].IEEE Transactions on Consumer Electronics,2012,58(2):522-527. [30] KAUBA C,PROMMEGGER B,UHL A.Combined Fully Contactless Finger and Hand Vein Capturing Device with a Corresponding Dataset[J].Sensors,2019,19(22):1-25. [31] KANG W,LIU H,LUO W,et al.Study of a Full-View 3D Finger Vein Verification Technique[J].IEEE Transactions on Information Forensics and Security,2019,15(1):1175-1189. [32] LIU Y Y.Research on Finger Vein Recognition System Basedon Micro Lens Array Ultrathin Device[D].Guangzhou:South China University of Technology,2017. [33] HUANG Q,HU K,ZHOU P,et al.Design of Finger Vein Capturing Device Based on ARM and CMOS Array[C]//Procee-dings of 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference(IMCEC).Los Alamitos,CA,USA:IEEE Computer Society,2018:193-196. [34] WANG M W,TANG D M,YU Y C,et al.Robust Edge Detection Method for Finger Vein Images[J].Application Research of Computers,2018,35(1):296-299. [35] YANG J,SHI Y.Finger-Vein ROI Localization and Vein Ridge Enhancement[J].Pattern Recognition Letters,2012,33(12):1569-1579. [36] YAO Q,SONG D,XU X.Robust Finger-Vein ROI Localization Based on the 3σ Criterion Dynamic Threshold Strategy[J].Sensors,2020,20(14):1-21. [37] YANG J,SHI Y.Towards Finger-Vein Image Restoration and Enhancement for Finger-Vein Recognition[J].Information Scien-ces,2014,268(1):33-52. [38] XIE S J,LU Y,YOON S,et al.Intensity Variation Normalization for Finger Vein Recognition using Guided Filter Based Singe Scale Retinex[J].Sensors,2015,15(7):17089-17105. [39] SHIN K Y,PARK Y H,NGUYEN D T,et al.Finger-Vein Image Enhancement using a Fuzzy-Based Fusion Method with Gabor and Retinex Filtering[J].Sensors,2014,14(2):3095-3129. [40] YOU W,ZHOU W,HUANG J,et al.A Bilayer Image Restoration for Finger Vein Recognition[J].Neurocomputing,2019,348(5):54-65. [41] WILLIAM A,ONG T S,LAU S H,et al.Finger Vein Verification using Local Histogram of Hybrid Texture Descriptors[C]//Proceedings of IEEE International Conference on Signal and Image Processing Applications(ICSIPA).Los Alamitos,CA,USA:IEEE Computer Society,2015:304-308. [42] LEI L,XI F,CHEN S.Finger-Vein Image Enhancement Based on Pulse Coupled Neural Network[J].IEEE Access,2019,7(99):57226-57237. [43] LIU J K,LI Y.Enhancement on the Low Contrast Finger Vein Image Under Non-Uniform Illumination[J].Microelectronics & Computer,2012,29(12):91-93,98. [44] WU J,HE D.Finger Vein Recognition Based on Feature Point Distance[C]//Proceedings of 3rd IEEE International Conference on Image,Vision and Computing(ICIVC).Los Alamitos,CA,USA:IEEE Computer Society,2018:163-167. [45] LIU F,YANG G,YIN Y,et al.Singular Value Decomposition Based Minutiae Matching Method for Finger Vein Recognition[J].Neurocomputing,2014,145(5):75-89. [46] WU J D,LIU C T.Finger-Vein Pattern Identification using Principal Component Analysis and the Neural Network Technique[J].Expert Systems with Applications,2011,38(5):5423-5427. [47] YOU L,WANG J,LI H,et al.Finger Vein Recognition Based on 2DPCA and KMMC[J].International Journal of Signal Processing,Image Processing and Pattern Recognition,2015,8(10):163-170. [48] ZHANG L P,LI W J,NING X,et al.A Finger Vein Recognition Method Based on Histogram of Oriented Line and(2D)2FPCA[J].Journal of Computer-Aided Design & Computer Graphics,2018,30(2):254-261. [49] HU N,MA H,ZHAN T.Finger Vein Biometric Verificationusing Block Multi-Scale Uniform Local Binary Pattern Features and Block Two-Directional Two-Dimension Principal Component Analysis[J].Optik,2020,208(1):1-16. [50] ROSDI B A,SHING C W,SUANDI S A.Finger Vein Recognition using Local Line Binary Pattern[J].Sensors,2011,11(12):11357-11371. [51] LU Y,YOON S,XIE S J,et al.Finger Vein Recognition using Generalized Local Line Binary Pattern[J].KSII Transactions on Internet & Information Systems,2014,8(5):1766-1784. [52] LIU C,WANG R C,XU X W,et al.Finger Vein RecognitionAlgorithm Based on Improved LBP[J].Computer Simulation,2019,36(1):381-386. [53] YANG G,XI X,YIN Y.FingerVein Recognition Based on a Personalized Best Bit Map[J].Sensors,2012,12(2):1738-1757. [54] ISMAIL B,ZMIRLI M O.Enhancement of Finger Vein Patterns Extracted by Maximum Curvature Method[C]//Proceedings of IEEE International Conference on Applied Smart Systems(ICASS).Los Alamitos,CA,USA:IEEE Computer Society,2018:1-4. [55] LI J,MA H,LV Y,et al.Finger Vein Feature Extraction Based on Improved Maximum Curvature Description[C]//Proceedings of IEEE Chinese Control Conference(CCC).Los Alamitos,CA,USA:IEEE Computer Society,2019:7566-7571. [56] SYARIF M A,ONG T S,TEOH A B J,et al.Enhanced Maximum Curvature Descriptors for Finger Vein Verification[J].Multimedia Tools and Applications,2017,76(5):6859-6887. [57] ZHANG J,LU Z,LI M.Active Contour-Based Methodfor Finger-Vein Image Segmentation[J].IEEE Transactions on Instrumentation and Measurement,2020,69(11):8656-8665. [58] CHEN G,DAI Q,TANG X,et al.An Improved Least Trimmed Square Hausdorff Distance Finger Vein Recognition[C]//Proceedings of 5th IEEE International Conference on Systems and Informatics(ICSAI).Los Alamitos,CA,USA:IEEE Computer Society,2018:939-943. [59] HONG H G,LEE M B,PARK K R.Convolutional Neural Network-Based Finger-Vein Recognition using NIR Image Sensors[J].Sensors,2017,17(6):1-21. [60] HUANG H,LIU S,ZHENG H,et al.Deepvein:Novel FingerVein Verification Methods Basedon Deep Convolutional Neural Networks[C]//Proceedings of IEEE International Conference on Identity,Security and Behavior Analysis(ISBA).Los Alamitos,CA,USA:IEEE Computer Society,2017:1-8. [61] ZHANG Y,LI W,ZHANG L,et al.Adaptive Gabor Convolutional Neural Networks for Finger-Vein Recognition[C]//Proceedings of IEEE International Conference on High Performance Big Data and Intelligent Systems(HPBD&IS).Los Alamitos,CA,USA:IEEE Computer Society,2019:219-222. [62] ZHU C,YANG Y,JANG Y.Research on Denoising of FingerVein Image Based on Deep Convolutional Neural Network[C]//Proceedings of 14th International Conference on Computer Scien-ce & Education(ICCSE).Los Alamitos,CA,USA:IEEE Computer Society,2019:374-378. [63] HOU B,YAN R.Convolutional Auto-Encoder Based Deep Feature Learning for Finger-Vein Verification[C]//Proceedings of IEEE International Symposium on Medical Measurements and Applications(MeMeA).Los Alamitos,CA,USA:IEEE Compu-ter Society,2018:1-5. [64] TANG S,ZHOU S,KANG W,et al.Finger Vein Verificationusing a Siamese CNN[J].IET Biometrics,2019,8(5):306-315. [65] FANG Y,WU Q,KANG W.A Novel Finger Vein Verification System Based on Two-Stream Convolutional Network Learning[J].Neurocomputing,2018,290(1):100-107. [66] YANG H,FANG P,HAO Z.A GAN-based Method for Generating Finger VeinDataset[C]//Proceedings of 3rd International Conference on Algorithms,Computing and Artificial Intelligence(ACAI).New York,NY,USA:Association for Computing Machinery,2020:1-6. [67] WANG G,SUN C,SOWMYA A.Learning a Compact Vein Discrimination Model with Ganerated Samples[J].IEEE Transactions on Information Forensics and Security,2019,15(1):635-650. [68] OU W F,PO L M,ZHOU C,et al.Fusion Loss and Inter-Class Data Augmentation for Deep Finger Vein Feature Learning[J].Expert Systems with Applications,2021,171(7):1-17. [69] YIN Y,LIU L,SUN X.SDUMLA-HMT:A Multimodal Bio-metric Database[C]//Proceedings of Chinese Conference on Biometric Recognition.Heidelberg,Berlin:Springer,2011:260-268. [70] TOME P,VANONI M,MARCEL S.On the Vulnerability ofFinger Vein Recognition to Spoofing[C]//Proceedings of IEEE International Conference of the Biometrics Special Interest Group(BIOSIG).Los Alamitos,CA,USA:IEEE Computer Society,2014:1-10. [71] LU Y,XIE S J,YOON S,et al.An Available Database for the Research of Finger Vein Recognition[C]//Proceedings of 6th IEEE International Congress on Image and Signal Processing(CISP).Los Alamitos,CA,USA:IEEE Computer Society,2013:410-415. [72] TON B T,VELDHUIS R N J.A High Quality Finger Vascular Pattern Dataset Collected using a Custom Designed Capturing Device[C]//Proceedings of IEEE International Conference on Biometrics(ICB).Los Alamitos,CA,USA:IEEE Computer Society,2013:1-5. [73] LIU T,XIE J,YAN W,et al.Finger-Vein Pattern Restoration with Direction-Variance-Boundary Constraint Search[J].Engineering Applications of Artificial Intelligence,2015,46(1):131-139. [74] QIN H,EL-YACOUBI M A.Deep Representation-Based Fea-ture Extraction and Recovering for Finger-Vein Verification[J].IEEE Transactions on Information Forensics & Security,2017,12(8):1816-1829. [75] GUO X,LI D,ZHANG H,et al.Image Restoration of Finger-Vein Networks Basedon Encoder-Decoder Model[J].Optoelectronics Letters,2019,15(6):463-467. [76] QIU X,KANG W,TIAN S,et al.Finger Vein Presentation Attack Detection using Total Variation Decomposition[J].IEEE Transactions on Information Forensics and Security,2017,13(2):465-477. |
[1] | 饶志双, 贾真, 张凡, 李天瑞. 基于Key-Value关联记忆网络的知识图谱问答方法 Key-Value Relational Memory Networks for Question Answering over Knowledge Graph 计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277 |
[2] | 汤凌韬, 王迪, 张鲁飞, 刘盛云. 基于安全多方计算和差分隐私的联邦学习方案 Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy 计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108 |
[3] | 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺. 时序知识图谱表示学习 Temporal Knowledge Graph Representation Learning 计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204 |
[4] | 王剑, 彭雨琦, 赵宇斐, 杨健. 基于深度学习的社交网络舆情信息抽取方法综述 Survey of Social Network Public Opinion Information Extraction Based on Deep Learning 计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099 |
[5] | 郝志荣, 陈龙, 黄嘉成. 面向文本分类的类别区分式通用对抗攻击方法 Class Discriminative Universal Adversarial Attack for Text Classification 计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077 |
[6] | 姜梦函, 李邵梅, 郑洪浩, 张建朋. 基于改进位置编码的谣言检测模型 Rumor Detection Model Based on Improved Position Embedding 计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046 |
[7] | 孙奇, 吉根林, 张杰. 基于非局部注意力生成对抗网络的视频异常事件检测方法 Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection 计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061 |
[8] | 郭拯危, 付泽文, 李宁, 白澜. 高分辨率斜视聚束SAR回波仿真加速算法研究 Study on Acceleration Algorithm for Raw Data Simulation of High Resolution Squint Spotlight SAR 计算机科学, 2022, 49(8): 178-183. https://doi.org/10.11896/jsjkx.210600066 |
[9] | 张源, 康乐, 宫朝辉, 张志鸿. 基于Bi-LSTM的期货市场关联交易行为检测方法 Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM 计算机科学, 2022, 49(7): 31-39. https://doi.org/10.11896/jsjkx.210400304 |
[10] | 胡艳羽, 赵龙, 董祥军. 一种用于癌症分类的两阶段深度特征选择提取算法 Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification 计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092 |
[11] | 曾志贤, 曹建军, 翁年凤, 蒋国权, 徐滨. 基于注意力机制的细粒度语义关联视频-文本跨模态实体分辨 Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism 计算机科学, 2022, 49(7): 106-112. https://doi.org/10.11896/jsjkx.210500224 |
[12] | 程成, 降爱莲. 基于多路径特征提取的实时语义分割方法 Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction 计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157 |
[13] | 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木. 中文预训练模型研究进展 Advances in Chinese Pre-training Models 计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018 |
[14] | 周慧, 施皓晨, 屠要峰, 黄圣君. 基于主动采样的深度鲁棒神经网络学习 Robust Deep Neural Network Learning Based on Active Sampling 计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044 |
[15] | 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫. 小样本雷达辐射源识别的深度学习方法综述 Survey of Deep Learning for Radar Emitter Identification Based on Small Sample 计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138 |
|