计算机科学 ›› 2023, Vol. 50 ›› Issue (6A): 220300202-5.doi: 10.11896/jsjkx.220300202
吴崇明1, 王晓丹2, 赵振冲2
WU Chongming1, WANG Xiaodan2, ZHAO Zhenchong2
摘要: 为提升代价敏感分类性能,通过提升较高误分代价类别的学习精度来降低总误分代价,利用支持向量域描述(Support Vector Domain Description,SVDD)实现代价敏感分类,提出一种代价敏感SVDD二类分类方法CS-SVDD。该方法首先将单类SVDD拓展为二类分类SVDD,对不同类别分别构建SVDD超球体,通过误分类代价调节SVDD分类器对不同类别样本的分类精度,对误分代价高的类别进行更为精确的学习,从而降低总误分代价;对于处于两个超球体之外或覆盖区域的类别属性不明确的样本,以误分代价最小为原则定义代价敏感决策规则。在人工数据集和UCI数据集上与同类方法进行了实验比较,实验结果表明了所提方法的有效性。
中图分类号:
[1]HABBEMA J D F,HERMANS J.Cases of doubt in allocation problems[J].Biometrika,1974,61(2):313-324. [2]ELKAN C.The Foundations of Cost-Sensitive Learning[C]//Proceedings of Proceedings of 17th International Joint Confe-rence on Artificial Intelligence.2001:973-978. [3]DHAR S,CHERKASSKY V.Development and evaluation ofcost-sensitive universum-SVM[J].IEEE Transactions on Cybernetics,2015,45(4):806-818. [4]YUAN G L,SUN Z W,QIN X Y,et al.Object Tracking Based on Cost Sensitive Structured SVM[J].Journal of Electronics & Information Technology,2021,43(11):3335-3341. [5]DATTA S,DAS S.Near-Bayesian Support Vector Machines for imbalanced data classification with equal or unequal misclassification costs[J].Neural Networks,2015,70:39-52. [6]IBÁÑEZ A,BIELZA C,LARRAÑAGA P.Cost-sensitive selective naïve Bayes classifiers for predicting the increase of the h-index for scientific journals[J].Neurocomputing,2014,135:42-52. [7]JIANG L,LI C,WANG S.Cost-sensitive Bayesian network classifiers[J].Pattern Recognition Letters,2014,45:211-216. [8]FREITAS A,COSTA-PEREIRA A,BRAZDIL P.Cost-sensitive decision trees applied to medical data[C]//Data Warehousing and Knowledge Discovery.Springer,2007:303-312. [9]LI X J,ZHAO H,ZHU W.A cost sensitive decision tree algorithm with two adaptive mechanisms[J].Knowledge-Based Systems,2015,88:24-33. [10]XIONG B Y,WANG G Y,DENG W B.Hierarchical Cost Sensi-tive Decision Tree and Its Application in Mobile Phone Replacement Prediction[J].Journal of Shandong University,2015,45(5):36-42. [11]CHEN Y L,WUB C C,TANG K.Time-constrained cost-sensitive decision tree induction[J].Information Sciences,2016,354:140-152. [12]SUN Y M.Cost-sensitive boosting for classification of imbal-anced data[J].Pattern Recognition,2007,40:3358-3378. [13]XUE Y Z,WANG T.Target tracking based on cost Sensitive Adaboost[J].Chinese Journal of Image and Graphics,2016,21(5):544-555. [14]CHENG F Y,ZHANG J,WEN C H.Cost-Sensitive Large margin Distribution Machine for classification of imbalanced data[J].Pattern Recognition Letters,2016,80:107-112. [15]CHENG F Y,ZHANG J.Large cost-sensitive margin distribution machine for imbalanced data classification[J].Neurocomputing,2017,224:45-57. [16]TAX D M J,DUIN R P W.Support vector domain description[J].Pattern Recognition Letters,1999,20:1191-1199. [17]TAX D M J,DUIN R P W.Support vector domain description[J].Machine Learning,2004,54:45-66. [18]LEE D,LEE J.Domain described support vector classifier formulti-classification problems[J].Pattern Recognition,2007,40(1):41-51. [19]MU T T,NANDI A K.Multiclass classification based on ex-tended support vector data description[J].IEEE Trans on Systems,Man,and Cybernetics-Part B:Cybernetics,2009,39(5):1206-1216. [20]ZHENG S F.Smoothly approximated support vector domain description[J].Pattern Recognition,2016,49:55-64. [21]GUO Y,XIAO H,FU Q.Least square support vector data description for HRRP-based radar target recognition[J].Applied Intelligence,2017,46:365-372. [22]WANG C D,LAI J H.Position regularized Support Vector Domain Description[J].Pattern Recognition,2013,46:875-884. [23]ElAZAMI M.Converting SVDD scores into probability esti-mates:Application to outlier detection[J/OL].http://dx.doi.org/10.1016/j.neucom.2017.01.103. [24]DUAN L X,XIE M Y.A new support vector data description method for machinery fault diagnosis with unbalanced datasets[J].Expert Systems With Applications,2016,64:239-246. [25]ZHOU Y M,WU K.Fault detection of aircraft based on support vector domain description[J].Computers and Electrical Engineering,2017,61:80-94. [26]HUANG G,CHEN H,ZHOU Z,et al.Two-class support vector data description[J].Pattern Recognition,2011,44:320-329. |
|