计算机科学 ›› 2023, Vol. 50 ›› Issue (1): 41-51.doi: 10.11896/jsjkx.220900255

• 数据库&大数据&数据科学 • 上一篇    下一篇

结合全局信息的深度图解耦协同过滤

郝敬宇, 文静轩, 刘华锋, 景丽萍, 于剑   

  1. 北京交通大学交通数据分析与挖掘北京市重点实验室 北京 100044
    北京交通大学计算机与信息技术学院 北京 100044
  • 收稿日期:2022-09-28 修回日期:2022-10-22 出版日期:2023-01-15 发布日期:2023-01-09
  • 通讯作者: 景丽萍(lpjing@bjtu.edu.cn)
  • 作者简介:jingyu@bjtu.edu.cn
  • 基金资助:
    国家自然科学基金(62176020);北京市自然科学基金(Z180006,L211016);国家科技研发计划(2020AAA0106800);中国人工智能学会-华为MindSpore学术奖励基金;中国科学院光电信息处理重点实验室开放课题基金(OEIP-O-202004)

Deep Disentangled Collaborative Filtering with Graph Global Information

HAO Jingyu, WEN Jingxuan, LIU Huafeng, JING Liping, YU Jian   

  1. Beijing Key Lab of Traffic Data Analysis and Mining,Beijing Jiaotong University,Beijing 100044,China
    School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,China
  • Received:2022-09-28 Revised:2022-10-22 Online:2023-01-15 Published:2023-01-09
  • About author:HAO Jingyu,born in 1998,master,is a member of China Computer Federation.His main research interests include graph representation learning and recommender system.
    JING Liping,born in 1978,Ph.D,professor,is a member of China Computer Federation.Her main research interests include machine learning,high dimensional data representation and their applications in artificial intelligence.
  • Supported by:
    National Natural Science Foundation of China(62176020),Natural Science Foundation of Beijing,China(Z180006,L211016),National Key Research and Development Program(2020AAA0106800),CAAI-Huawei MindSpore Open Fund and Chinese Academy of Sciences(OEIP-O-202004).

摘要: 基于GCN的协同过滤模型通过用户物品交互二部图上的信息聚合过程生成用户节点和物品节点的表示,预测用户对物品的偏好。然而,这些模型大多没有考虑用户不同的交互意图,无法充分挖掘用户与物品之间的关系。已有的图解耦协同过滤模型建模了用户的交互意图,却忽略了图全局信息,没有考虑用户节点和物品节点的本质特征,造成表示语义不完整;并且由于受到模型迭代结构的影响,意图解耦学习的过程并不高效。针对上述问题,设计了结合全局信息的深度图解耦协同过滤模型G2DCF(Global Graph Disentangled Collaborative Filtering)。该模型构建了图全局通道和图解耦通道,分别学习节点的本质特征和意图特征;通过引入正交约束和表示独立性约束,使用户-物品的交互意图尽可能唯一防止意图退化,同时提高不同意图下表示的独立性,提升模型的解耦效果。对比已有的图协同过滤模型,G2DCF能更综合地刻画用户特征和物品特征。在3个公开数据集上进行了实验,结果表明G2DCF在多个评价指标上优于对比方法;分析了表示分布的表示独立性和表示均匀性,验证了模型的解耦效果;同时从收敛速度上进行了对比,验证了模型的有效性。

关键词: 推荐系统, 协同过滤, 解耦表示学习, 图神经网络, 全局信息

Abstract: GCN-based collaborative filtering models generate the representation of user nodes and item nodes by aggregating information on user-item interaction bipartite graph,and then predict users' preferences on items.However,they neglect users' different interaction intents and cannot fully explore the relationship between users and items.Existing graph disentangled collaborative filtering models model users' interaction intents,but ignore the global information of interaction graph and the essential features of users and items,causing the incompleteness of representation semantics.Furthermore,disentangled representation learning is inefficient due to the iterative structure of model.To solve these problems,this paper devises a deep disentangled collaborative filtering model incorporating graph global information,which is named as global graph disentangled collaborative filtering(G2DCF).G2DCF builds graph global channel and graph disentangled channel,which learns essential features and intent features,respectively.Meanwhile,by introducing orthogonality constraint and representation independence constraint,G2DCF makes every user-item interaction intent as unique as possible to prevent intent degradation,and raises the independence of representations under different intents,so as to improve the disentanglement effect.Compared with the previous graph collaborative filtering models,G2DCF can more comprehensively describe features of users and items.A number of experiments are conducted on three public datasets,and results show that the proposed method outperforms the comparison methods on multiple metrics.Further,this paper analyzes the representation distributions from independence and uniformity,verifies the disentanglement effect.It also compares the convergence speed to verify the effectiveness.

Key words: Recommender system, Collaborative filtering, Disentangled representation learning, Graph neural network, Global information

中图分类号: 

  • TP181
[1]SU X,KHOSHGOFTAAR T M.A survey of collaborative filtering techniques[J].Advances in Artificial Intelligence,2009,2009(4):1-19.
[2]KOREN Y,BELL R,VOLINSKY C.Matrix factorization tech-niques for recommender systems[J].Computer,2009,42(8):30-37.
[3]ZHANG S,TONG H,XU J,et al.Graph convolutional net-works:a comprehensive review[J].Computational Social Networks,2019,6(1):1-23.
[4]WU F,SOUZA A,ZHANG T,et al.Simplifying graph convolutional networks[C]//International Conference on Machine Learning.2019:6861-6871.
[5]BERG R V,KIPF T N,WELLING M.Graph convolutional matrix completion[C]//KDD.2018.
[6]WANG X,HE X,WANG M,et al.Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:165-174.
[7]HE X,DENG K,WANG X,et al.Lightgcn:Simplifying andpowering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:639-648.
[8]CHEN T,YIN H,CHEN H,et al.Air:Attentional intention-aware recommender systems[C]//2019 IEEE 35th International Conference on Data Engineering(ICDE).2019:304-315.
[9]MA J,CUI P,KUANG K,et al.Disentangled graph convolutional networks[C]//International Conference on Machine Learning.2019:4212-4221.
[10]MA J,ZHOU C,CUI P,et al.Learning disentangled representations for recommendation[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems.2019:5711-5722.
[11]RAO N,YU H F,RAVIKUMAR P K,et al.Collaborative filtering with graph information:Consistency and scalable methods[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems.2015:2107-2115.
[12]WANG X,JIN H,ZHANG A,et al.Disentangled graph collaborative filtering[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:1001-1010.
[13]LOCATELLO F,BAUER S,LUCIC M,et al.Challenging common assumptions in the unsupervised learning of disentangled representations[C]//International Conference on Machine Learning.2019:4114-4124.
[14]YU J,YIN H,XIA X,et al.Are Graph Augmentations Necessary? Simple Graph Contrastive Learning for Recommendation[J].arXiv:2112.08679,2021.
[15]KINGMA D P,WELLING M.Auto-encoding variational bayes[C]//Proceedings of the International Conference on Learning Representations.2014.
[16]HIGGINS I,MATTHEY L,PAL A,et al.beta-vae:Learning basic visual concepts with a constrained variational framework[C]//Proceedings of the International Conference on Learning Representations.2017.
[17]LIU Y,WANG X,WU S,et al.Independence promoted graph disentangled networks[C]//Proceedings of the AAAI Confe-rence on Artificial Intelligence.2020:4916-4923.
[18]WANG H,WANG N,YEUNG D Y.Collaborative deep learning for recommender systems[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2015:1235-1244.
[19]HE X,LIAO L,ZHANG H,et al.Neural Collaborative Filtering[C]//Proceedings of the 26th International Conference on World Wide Web.2017:173-182.
[20]KOREN Y.Factorization meets the neighborhood:a multiface-ted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.2008:426-434.
[21]KABBUR S,NING X,KARYPIS G.Fism:factored item simila-rity models for top-n recommender systems[C]//Proceedings of the 19th ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining.2013:659-667.
[22]HE X,HE Z,SONG J,et al.Nais:Neural attentive item similarity model for recommendation[J].IEEE Transactions on Know-ledge and Data Engineering,2018,30(12):2354-2366.
[23]HAVELIWALA T H.Topic-sensitive pagerank:A context-sensitive ranking algorithm for web search[J].IEEE Transactions on Knowledge and Data Engineering,2003,15(4):784-96.
[24]ZHENG L,LU C T,JIANG F,et al.Spectral collaborative filtering[C]//Proceedings of the 12th ACM Conference on Recommender Systems.2018:311-319.
[25]YANG J H,CHEN C M,WANG C J,et al.HOP-rec:high-order proximity for implicit recommendation[C]//Proceedings of the 12th ACM Conference on Recommender Systems.2018:140-144.
[26]WU J,WANG X,FENG F,et al.Self-supervised graph learning for recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.2021:726-735.
[27]WU F,SOUZA A,ZHANG T,et al.Simplifying graph convolutional networks[C]//International Conference on Machine Learning.2019:6861-6871.
[28]YU W,QIN Z.Graph convolutional network for recommenda-tion with low-pass collaborative filters[C]//International Conference on Machine Learning.2020:10936-10945.
[29]JANG E,GU S,POOLE B.Categorical reparameterization with gumbel-softmax[C]//Proceedings of the International Confe-rence on Learning Representations.2017.
[30]BIANCHI F M,GRATTAROLA D,ALIPPI C.Spectral clustering with graph neural networks for graph pooling[C]//International Conference on Machine Learning.2020:874-883.
[31]SONG L,SMOLA A,GRETTON A,et al.Supervised featureselection via dependence estimation[C]//Proceedings of the 24th International Conference on Machine learning.2007:823-830.
[32]GRETTON A,BOUSQUET O,SMOLA A,et al.Measuringstatistical dependence with Hilbert-Schmidt norm[C]//International Conference on Algorithmic Learning Theory.2005:63-77.
[33]NIU D,DY J G,JORDAN M I.Multiple non-redundant spectral clustering views[C]//International Conference on Machine Learning.2010:831-838.
[34]RENDLE S,FREUDENTHALER C,GANTNER Z,et al.BPR:Bayesian personalized ranking from implicit feedback[C]//Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence.2009:452-461.
[35]GOLBECK J,HENDLER J A.FilmTrust:movie recom- mendations using trust in web-based social networks[C]//Consumer Communications and Networking Conference.2006:282-286.
[36]LIANG D,CHARLIN L,MCINERNEY J,et al.Modeling user exposure in recommendation[C]//Proceedings of the 25th International Conference on World Wide Web.2016:951-961.
[37]HE R,MCAULEY J.Ups and downs:Modeling the visual evolution of fashion trends with one-class collaborative filtering[C]//Proceedings of the 25th International Conference on World Wide Web.2016:507-517.
[38]HERLOCKER J L,KONSTAN J A,TERVEEN L G,et al.Evaluating collaborative filtering recommender systems[J].ACM Transactions on Information Systems,2004,22(1):5-53.
[39]KINGMA D P,BA J.Adam:A method for stochastic optimization[C]//Proceedings of the International Conference on Lear-ning Representations.2015.
[40]GLOROT X,BENGIO Y.Understanding the difficulty of trai-ning deep feedforward neural networks[C]//Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics.2010:249-256.
[41]VAN DER MAATEN L,HINTON G.Visualizing data usingt-SNE[J].Journal of machine learning research,2008,9:2579-2605.
[42]WANG T,ISOLA P.Understanding contrastive representation learning through alignment and uniformity on the hypersphere[C]//International Conference on Machine Learning.Virtual Event,USA,2020:9929-9939.
[43]SZÉKELY G J,RIZZO M L,BAKIROV N K.Measuring and testing dependence by correlation of distances[J].The Annals of Statistics,2007,35(6):2769-2794.
[44]CHENG Z,DING Y,ZHU L,et al.Aspect-aware latent factor model:Rating prediction with ratings and reviews[C]//Procee-dings of the 2018 World Wide Web Conference.2018:639-648.
[45]LI C,QUAN C,PENG L,et al.A capsule network for recommendation and explaining what you like and dislike[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:275-284.
[46]SUN C,LIU H,LIU M,et al.LARA:Attribute-to-feature adversarial learning for new-item recommendation[C]//Procee-dings of the 13th International Conference on Web Search and Data.2020:582-590.
[47]JIN B,GAO C,HE X,et al.Multi-behavior recommendationwith graph convolutional networks[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:659-668.
[1] 顾希之, 邵蓥侠.
基于影响力剪枝的图神经网络快速计算图精简
Fast Computation Graph Simplification via Influence-based Pruning for Graph Neural Network
计算机科学, 2023, 50(1): 52-58. https://doi.org/10.11896/jsjkx.220900032
[2] 蒲金垚, 卜令梅, 卢永美, 叶子铭, 陈黎, 于中华.
利用异构图神经网络实现情绪-原因对的有效抽取
Utilizing Heterogeneous Graph Neural Network to Extract Emotion-Cause Pairs Effectively
计算机科学, 2023, 50(1): 205-212. https://doi.org/10.11896/jsjkx.211100265
[3] 程章桃, 钟婷, 张晟铭, 周帆.
基于图学习的推荐系统研究综述
Survey of Recommender Systems Based on Graph Learning
计算机科学, 2022, 49(9): 1-13. https://doi.org/10.11896/jsjkx.210900072
[4] 王冠宇, 钟婷, 冯宇, 周帆.
基于矢量量化编码的协同过滤推荐方法
Collaborative Filtering Recommendation Method Based on Vector Quantization Coding
计算机科学, 2022, 49(9): 48-54. https://doi.org/10.11896/jsjkx.210700109
[5] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[6] 秦琪琦, 张月琴, 王润泽, 张泽华.
基于知识图谱的层次粒化推荐方法
Hierarchical Granulation Recommendation Method Based on Knowledge Graph
计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111
[7] 方义秋, 张震坤, 葛君伟.
基于自注意力机制和迁移学习的跨领域推荐算法
Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning
计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011
[8] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[9] 帅剑波, 王金策, 黄飞虎, 彭舰.
基于神经架构搜索的点击率预测模型
Click-Through Rate Prediction Model Based on Neural Architecture Search
计算机科学, 2022, 49(7): 10-17. https://doi.org/10.11896/jsjkx.210600009
[10] 齐秀秀, 王佳昊, 李文雄, 周帆.
基于概率元学习的矩阵补全预测融合算法
Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning
计算机科学, 2022, 49(7): 18-24. https://doi.org/10.11896/jsjkx.210600126
[11] 孙晓寒, 张莉.
基于评分区域子空间的协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm Based on Rating Region Subspace
计算机科学, 2022, 49(7): 50-56. https://doi.org/10.11896/jsjkx.210600062
[12] 杨炳新, 郭艳蓉, 郝世杰, 洪日昌.
基于数据增广和模型集成策略的图神经网络在抑郁症识别上的应用
Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition
计算机科学, 2022, 49(7): 57-63. https://doi.org/10.11896/jsjkx.210800070
[13] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[14] 蔡晓娟, 谭文安.
一种改进的融合相似度和信任度的协同过滤算法
Improved Collaborative Filtering Algorithm Combining Similarity and Trust
计算机科学, 2022, 49(6A): 238-241. https://doi.org/10.11896/jsjkx.210400088
[15] 何亦琛, 毛宜军, 谢贤芬, 古万荣.
基于点割集图分割的矩阵变换与分解的推荐算法
Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation
计算机科学, 2022, 49(6A): 272-279. https://doi.org/10.11896/jsjkx.210600159
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!