计算机科学 ›› 2024, Vol. 51 ›› Issue (6): 375-383.doi: 10.11896/jsjkx.230300130

• 计算机网络 • 上一篇    下一篇

基于改进型蛇算法的RFID网络规划部署

李芷芊, 郑嘉利, 陈奕君, 张江波   

  1. 广西大学计算机与电子信息学院 南宁 530004
    广西多媒体通信与网络技术重点实验室 南宁 530004
  • 收稿日期:2023-03-16 修回日期:2023-06-28 出版日期:2024-06-15 发布日期:2024-06-05
  • 通讯作者: 郑嘉利(zjl@gxu.edu.cn)
  • 作者简介:(997726864@qq.com)
  • 基金资助:
    国家自然科学基金(62366004)

Enhanced Snake Optimizer Based RFID Network Planning

LI Zhiqian, ZHENG Jiali, CHEN Yijun, ZHANG Jiangbo   

  1. School of Computer,Electrics and Information,Guangxi University,Nanning 530004,China
    Guangxi Key Laboratory of Multimedia Communications and Network Technology,Nanning 530004,China
  • Received:2023-03-16 Revised:2023-06-28 Online:2024-06-15 Published:2024-06-05
  • About author:LI Zhiqian,born in 1996,postgraduate.Her main research interests include RFID network planning and so on.
    ZHENG Jiali,born in 1979,professor.His main research interests include Internet of Things,RFID and AI.
  • Supported by:
    National Natural Science Foundation of China(62366004).

摘要: 针对无线射频识别(RFID)网络规划的优化部署问题,提出一种基于Circle映射的嵌入正弦余弦算法和自适应阈值的改进型蛇算法(ESO)。在种群初始化阶段利用Circle混沌映射的均匀性和遍历性等特点,在局部搜索阶段和开发阶段分别引入正弦余弦算法(SCA)和自适应阈值等算法机制,弥补了蛇算法初始化过程不够均匀、容易陷入局部最优和收敛速度慢等缺点。在满足100%标签覆盖率、减少阅读器之间的碰撞干扰、实现阅读器的负载均衡,以及降低总的发射功率这4个目标的基础上,求解阅读器最佳的部署位置,将所提算法与粒子群算法(PSO)、灰狼算法(GWO)、樽海鞘算法(SSA)进行了对比分析。实验结果表明,改进型蛇算法在对RFID网络进行优化部署时寻优能力更强,对RFID网络部署的综合性能提升明显,在相同的实验条件下,ESO的最佳适应度值比PSO提高了28.1%,比GWO提高了17.7%,比SSA提高了22.9%,可以更有效地得出最优的RFID网络规划部署方案。

关键词: RFID网络, 蛇算法, Circle映射, 正弦余弦算法, 自适应阈值, 网络规划

Abstract: Aiming at the optimal deployment of radio frequency identification(RFID) network planning,an enhanced snake optimizer based on the embedded sine cosine algorithm(SCA) and adaptive threshold is proposed.In the population initialization stage,taking advantage of the uniformity and ergodicity of the Circle chaotic map,the algorithm mechanisms such as sine cosine algorithm and adaptive threshold are introduced in the local search stage and the development stage,respectively,to get rid of the disadvantages of the snake optimizer such as uneven initialization process,easy to fall into local optimization and slow convergence speed.On the basis of meeting the four objectives of 100% label coverage,reducing the collision interference between readers and writers,achieving the load balance of readers and writers,and reducing the total transmission power,the optimal deployment location of readers is solved.Enhanced snake optimizer(ESO) is compared with particle swarm optimization(PSO),grey wolf optimizer(GWO),and salp swarm algorithm(SSA).Experimental results show that enhanced snake optimizer has a stronger ability to optimize the deployment of RFID network,and its overall performance is significantly improved.Under the same experimental conditions,the optimal fitness value of ESO is 28.1% higher than PSO,17.7% higher than GWO,and 22.9% higher than SSA,which can more effectively obtain the optimal RFID network planning and deployment scheme.

Key words: RFID network, Snake optimizer, Circle chaotic map, Sine-Cosine algorithm, Adaptive threshold, Network planning

中图分类号: 

  • TP301.6
[1]WANG Z C.The top ten keywords of China’s Internet of Things industry in 2012[J].Communication Enterprise Ma-nagement,2023(2):40-43.
[2]TALIB N H,NAWAWI A B,ELEWE AM,et al.An efficient algorithm for large-scale RFID network planning[C]//2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology(JEEIT).IEEE,2019:519-524.
[3]JOURDAN D B,WECK O L D.Layout optimization for a wireless sensor network using a multi-objective genetic algorithm[C]//IEEE Vehicular Technology Conference.IEEE,2004,5(2):2466-2470.
[4]ENGELS D W,SARMA S E.The reader collision problem[C]//IEEE International Conference on Systems.IEEE,2002.
[5]HAN M K,PAIK I W,LEE B H,et al.A framework for seamless information retrieval between an EPC network and a mobile RFID network[C]//The Sixth IEEE International Conference on Computer and Information Technology(CIT’06).IEEE,2006:98-98.
[6]SHOKOUHIFAR M.Swarm intelligence RFID network plan-ning using multi-antenna readers for asset tracking in hospital environments[J].Computer Networks,2021,198:108427.
[7]WANG Y J,ZHOU H.Multi-objective planning of RFID network based on hybrid firefly algorithm[J].Computer Application Research,2018,35(10):3003-3006.
[8]CHEN H,ZHU Y,HU K,et al.RFID network planning using a multi-swarm optimizer[J]Journal of Network and Computer Applications,2011,34(3):888-901.
[9]JABALLAH A,MEDDEB A.A new variant of cuckoo searchalgorithm with self-adaptive parameters to solve complex RFID network planning problem[J].Wireless Networks,2019,25(4):1585-1604.
[10]QUAN Y X,ZHENG J L,LUO W C,et al.RFID network planning based on improved grey wolf algorithm[J].Computer Science,2021,48(1):253-257.
[11]KENNEDY J,EBERHART R.Particle Swarm Optimization[C]//ICNN95-International Conference on Neural Networks.IEEE,1995.
[12]MIRIJILI S,MIRJALILI S M,LEWIS A.Grey Wolf Optimizer[J].Advances in Engineering Software,2014,69(3):46-61.
[13]MIRJALILI S,GANDOMI A H,MIRJALILI S Z,et al.SalpSwarm Algorithm:A bio-inspired optimizer for engineering design problems[J].Advances in Engineering Software,2017,114:163-191.
[14]ALSALIH W.Load-aware Reader Placement Algorithms forRFID Networks[J].Journal of Emerging Trends in Computing and Information Sciences,2014,5(10):780-787.
[15]ZHAO C,WU C,CHAI J,et al.Decomposition-based multi-objective firefly algorithm for RFID network planning with uncertainty[J].Applied Soft Computing,2017,55:549-564.
[16]LUO W C,ZHENG J L,et al.RFID Reader Antenna Optimal Deployment Based on Improved Elephant Herding Algorithm[C]//2021 IEEE International Conference on Consumer Electronics and Computer Engineering(ICCECE).IEEE,2021:348-352.
[17]ZHANG T,LIU J.An efficient and fast kinematics-based algorithm for RFID network[J].Computer Networks,2017,121:13-24.
[18]MA L,WANG X,HUANG M,et al.Two-level master-slaveRFID networks planning via hybrid multi-objective artificial bee colony optimizer[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2017,49(5):861-880.
[19]CHAI Y H.A New Hybrid Intelligent Optimization MethodBased on RFID Network Planning[J].Integrated Circuit Applications,2020,37(8):124-125.
[20]HASHIM F A,HUSSIEN A G.Snake Optimizer:A novel meta-heuristic optimization algorithm[J].Knowledge-Based Systems,2022,242:108320.
[21]GANDOMI A H,YANG X S,TALATAHARIS,et al.Firefly algorithm with chaos[J].Communications in Nonlinear Science and Numerical Simulation,2013,18(1):89-98.
[22]ARORA S,ANAND P.Chaotic grasshopper optimization algorithm for global optimization[J].Neural Computing and Applications,2019,31:4385-4405.
[23]LIU D H,YUAN S C,AN Y,et al.Method of particle swarm optimization based on the chaos map[J].Journal of Xidian University,2010,37(4):764-769.
[24]RIZK-ALLAH R M,HASSANIEN A E,BHATTACHARYYA S.Chaotic crow search algorithm for fractional optimization problems[J].Applied Soft Computing,2018,71:1161-1175.
[25]ZHANG W K,LIU S,REN C H.Hybrid strategy improvedsparrow search algorithm[J].Computer Engineering and Application,2021,57(24):74-82.
[26]ZHENG H Q,FENG W J,ZHOU Y Q.Butterfly optimization algorithm based on sine and cosine algorithm[J].Guangxi Science,2021,28(2):152-159.
[27]XU H,ZHANG D,WANG Y R,et al.Whale optimization algorithm based on Gaussian mapping and keyhole imaging learning strategy[J].Computer Application Research,2020,37(11):3271-3275.
[28]JI Z C,WEI L,LI X M.Optimized deployment of RFID network based on LZM-WKPSO algorithm[J].Control Engineering,2014,21(3):343-346.
[29]MA L,HU K,ZHU Y,et al.Cooperative artificial bee colony algorithm for multi-objective RFID network planning[J].Journal of Network and Computer Applications,2014,42:143-162.
[30]XIE X,ZHENG J L,FENG M Y,et al.Multi-objective mayflyoptimization algorithm based on dimensional swap variation for RFID network planning[J].IEEE Sensors Journal,2022,22(7):7311-7323.
[31]LIU Z,CAI L H,YE C.Research on an improved method for measuring radar harmonic radiation emissions[J].Electronic Testing,2022,36(21):60-63.
[32]LIN Z,ZHENG J,XIE X,et al.RFID network planning based on improved brain storm optimization algorithm[J].The Journal of China University of Posts and Telecommunications(English Edition),2022,29(5):30-39.
[33]ZHANG J,ZHENG J,XIE X,et al.Mayfly sparrow search hybrid algorithm for RFID Network Planning[J].IEEE Sensors Journal,2022,22(16):16673-16686.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!