计算机科学 ›› 2023, Vol. 50 ›› Issue (9): 44-51.doi: 10.11896/jsjkx.230600013
庄园1, 曹文芳1, 孙国凯1, 孙建国2, 申林山1, 尤扬3, 王晓鹏3, 张云海3
ZHUANG Yuan1, CAO Wenfang1, SUN Guokai1, SUN Jianguo2, SHEN Linshan1, YOU Yang3, WANG Xiaopeng3, ZHANG Yunhai3
摘要: 随着信息化和工业化的深度融合,工业物联网网络协议安全问题日益突出。现有网络协议漏洞挖掘技术以特征变异和模糊测试为主,存在依赖专家经验和无法突破未知协议的局限。针对工业物联网协议的漏洞挖掘挑战,文中从漏洞检测规则的自动化分析与生成展开研究,提出基于生成对抗网络与变异策略结合的网络协议漏洞挖掘方法。首先,采用一种基于生成对抗网络的网络协议分析模型,通过对报文序列进行深层信息挖掘,提取报文格式及相关特征,实现对网络协议结构的识别。然后,结合基于变异算子库指导的迭代变异策略,构建有导向性的测试用例生成规则,缩短漏洞发现的时间;最终,形成面向未知工控网络协议的自动化漏洞挖掘方法,满足现有工控应用领域对协议自动化漏洞挖掘的需求。基于上述方法,对两种工控协议(Modbus-TCP和S7)进行测试,并对生成用例的测试接收率、漏洞检测能力、用例生成时间及其多样性方面进行了评估。实验结果表明,所提方法在TA指标上高达89.4%,本方法检测模拟系统ModbusSlave的AD指标为6.87%,缩短了有效用例的生成时间,提升了工控协议漏洞挖掘的效率。
中图分类号:
[1]LI D.Analysis of the Earthquake Network Virus Event and Enlightenment on Improving Industrial Control Security Protection Capability [J].Network Security Technology and Application,2019,217(1):9-10,24. [2]RUI X.2020 China Network Security Report [J].Research on Information Security,2021,7(2):102-109. [3]WHITEHEAD D E,OWENS K,GAMMEL D,et al.Ukraine cyber-induced power outage:Analysis and practical mitigation strategies[C]//2017 70th Annual Conference for Protective Relay Engineers(CPRE).IEEE,2017:1-8. [4]KURDS J F,WROSS K.Computer Networking A Top-Down Approach Seventh Edition[M].China Machine Press,2021. [5]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative Adversarial Nets[C]//Neural Information Processing Systems.MIT Press,2014. [6]WANG Z L,ZHANG B W.Overview of Research on Generative Adversarial Networks [J].Journal of Network and Information Security,2021,7(4):68-85. [7]GURUMURTHY S,SARVADEVABHATLA R K,RADHAK-RISHNAN V B.DeLiGAN:Generative Adversarial Networks for Diverse and Limited Data[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2017. [8]GHOSH A,KULHARIA V,NAMBOODIRI V,et al.Multi-Agent Diverse Generative Adversarial Networks[J].arXiv:1706.02906,2017. [9]PORTER B W,BAREISS E R.PROTOS:An Experiment inKnowledge Acquisition for Heuristic Classification Tasks[M].University of Texas at Austin,1986. [10]AITEL D.MSRPC Fuzzing with SPIKE 2006[J/OL].http://www.immunitysec/spike.html. [11]KIM M,PARK S,YOON J,et al.File Analysis Data Auto-Creation Model For Peach Fuzzing[J].Journal of the Korea Institute of Information Security and Cryptology,2014,24(2):327-333. [12]JI T,WANG Z,TIAN Z,et al.AFLPro:Direction sensitive fuz-zing[J].Journal of Information Security and Applications,2020,54:102497. [13]ZALEWSKI M.Americanfuzzylop.[EB/OL].http://lcamtuf.c.cx/aflfl/. [14]LAI Y X,YANG K X,LIU J,et al.Mining Method for Indus-trial Control Network Protocol Vulnerability Based on Fuzzy Testing [J].Computer Integrated Manufacturing System,2019,25(9):2265-2279. [15]LV C,JI S,LI Y,et al.SmartSeed:Smart Seed Generation for Efficient Fuzzing[J].arXiv:1807.02606,2018. [16]BOTTINGER K,GODEFROID P,SINGH R.Deep Reinforce-ment Fuzzing[C]//2018 IEEE Security and Privacy Workshops(SPW).IEEE,2018. [17]GODEFROID P,SINGH R,PELEG H.Machine Learning for Input Fuzzing:US patent,20180285186A1[P].2018. [18]ZHAO H,LI Z,WEI H,et al.SeqFuzzer:An Industrial ProtocolFuzzing Framework from a Deep Learning Perspective[C]//IEEE Conference on Software Testing,Validation and Verification.East China Normal University,2019. [19]LIN P Y,TIEN C W,HUANG T C,et al.ICPFuzzer:proprietary communication protocol fuzzing by using machine learning and feedback strategies[J].Cybersecurity,2021,4(1):1-15. [20]SONG C X,YU B,ZHOU X,et al.SPFuzz:A HierarchicalScheduling Framework For Stateful Network Protocol Fuzzing[J].IEEE Access,2019,7:18490-18499. [21]LI Z,ZHAO H,SHI J,et al.An Intelligent Fuzzing Data Gene-ration Method Based on Deep Adversarial Learning[J].IEEE Access,2019,7:49327-49340. [22]PANT M,ALI M,ABRAHAM A.Mixed mutation strategy embedded differential evolution[C]//2009 IEEE Congress on Evolutionary Computation.IEEE,2009:1240-1246. [23]LI W M,ZHANG A F,LIU J C,et al.Automated Fuzzy Testing Vulnerability Mining Method for Network Protocol [J].Chinese Journal of Computer,2011,34(2):242-255. [24]DENG J,ZHU X,XIAO X,et al.Fuzzing With Optimized Grammar-Aware Mutation Strategies[J].IEEE Access,2021,9:95061-95071. [25]LAI Y,GAO H,LIU J.Vulnerability Mining Method for the Modbus TCP Using an Anti-Sample Fuzzer[J].Sensors,2020,20(7):2040. [26]SASI A,HARIPRASAD K V,CHERIAN S,et al.R0fuzz:A Collaborative Fuzzer for ICS Protocols[C]//2021 12th International Conference on Computing Communication and Networking Technologies(ICCCNT).2021. [27]XU Y,YI Y,LI T,et al.Review on cyber vulnerabilities of communication protocols in industrial control systems[C]//2017 IEEE Conference on Energy Internet and Energy System Integration(EI2).IEEE,2017. [28]HU Z,SHI J,HUANG Y H,et al.GANFuzz:a GAN-based industrial network protocol fuzzing framework[C]//the 15th ACM International Conference.ACM,2018. [29]LEMAY A,FERNANDEZ J M.Providing {SCADA} Network Data Sets for Intrusion Detection Research [C]//9th Workshop on Cyber Security Experimentation and Test({CSET} 16).2016. |
|