计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230800119-7.doi: 10.11896/jsjkx.230800119

• 交叉&应用 • 上一篇    下一篇

基于LSTM和注意力机制的远程会诊需求预测

翟运开1,2,3, 乔正文1, 乔岩1   

  1. 1 郑州大学管理学院 郑州 450001
    2 互联网医疗系统与应用国家工程实验室 郑州 450052
    3 河南省智能健康信息系统国际联合实验室 郑州 450000
  • 发布日期:2024-06-06
  • 通讯作者: 乔岩(zzuqiaoyan@zzu.edu.cn)
  • 作者简介:(zhaiyunkai@zzu.edu.cn)
  • 基金资助:
    国家自然科学基金(72202217,71972012);河南省高等学校重点科研项目计划(24A630034);河南省高等学校哲学社会科学基础研究重大项目(2022-JCZD-21)

Forecasting Teleconsultation Demand Based on LSTM and Attention Mechanism

ZHAI Yunkai1,2,3, QIAO Zhengwen1, QIAO Yan1   

  1. 1 School of Management,Zhengzhou University,Zhengzhou 450001,China
    2 National Engineering Laboratory of Internet Medical Systems and Applications,Zhengzhou 450052,China
    3 Henan Province International Joint Laboratory of Intelligent Health Information System,Zhengzhou 450000,China
  • Published:2024-06-06
  • About author:ZHAI Yunkai,born in 1980,Ph.D,professor,Ph.D supervisor.His main research interests include healthcare big data and telemedicine information system and management.
    QIAO Yan,born in 1991,Ph.D.His main research interests include healthcare big data and medical informatization.
  • Supported by:
    National Natural Science Foundation of China(72202217,71972012),Key Research Project Plan for Colleges and Universities of Henan Province(24A630034),Major Project of Basic Research of Philosophy and Social Science in Colleges and Universities of Henan Province(2022-JCZD-21).

摘要: 为更准确地预测远程会诊需求量,提高远程会诊资源配置效率,文中引入多元回归分析(Multiple Linear Regression)和注意力机制来优化长短期记忆网络(LSTM)。首先,根据远程会诊需求中存在的假期效应生成假期指标,通过多元回归分析选取显著性高的指标作为模型输入,然后根据长短期记忆网络学习输入指标的内部复杂映射关系,利用注意力机制对指标分配不同权重,最后根据权重和LSTM隐藏层输入预测结果。基于国家远程医疗中心(NTCC)的实际历史会诊数据,研究MLR-Attention-LSTM的预测性能,并比较其与整合移动平均自回归模型、支持向量机、K近邻、BP神经网络和LSTM神经网络5种模型的预测效果。结果表明,优化后的LSTM模型预测精度最高。进一步地,探究假期指标对模型性能的影响,结果表明假期指标的输入可以进一步提高模型的预测精度,验证了MLR-Attention-LSTM和假期相关变量输入在远程会诊需求预测领域的可行性与适用性,为远程医学中心实际应用提供了理论支撑和实践指导。

关键词: 长短期记忆网络, 注意力机制, 远程会诊, 需求预测, 假期效应

Abstract: To predict the demand for teleconsultation more accurately and improve the efficiency of resource allocation for teleconsultation,this paper introduces multiple linear regression and attention mechanism to optimize Long Short-term Memory network.Firstly,according to the holiday effect existing in the teleconsultation demand,the holiday index is generated,and the index with high significance is selected as the model input through multiple regression analysis.Then,according to the long-term short-term memory network to learn the internal complex mapping relationship of the input indicators,the attention mechanism is used to assign different weights to the indicators.Finally,the prediction results are input according to the weight and LSTM hidden layer.Based on the actual historical teleconsultation data of the National Telemedicine Center,this paper studies the predictive ability of MLR-Attention-LSTM,and compares it with the ARIMA,SVR,KNN,BP neural network and long short-term memory network.The results show that the improved LSTM model has the highest prediction accuracy.Furthermore,this paper explores the impact of holiday indicators on the performance of the model.The results show that the input of holiday indicators can further improve the prediction accuracy of the model.It verifies the feasibility and applicability of MLR-Attention-LSTM and holiday-related variable input in the field of teleconsultation demand prediction,and provides theoretical support and practical guidance for the practical application of telemedicine centers.

Key words: Long short-term memory, Attention mechanism, Teleconsultation, Demand forecasting, Holiday effect

中图分类号: 

  • TP183
[1]ZHAO J,CUI Z Y,CAI Y L,et al.Analysis on the Efficiency Optimization of Resource Allocation Based on Telemedicine[J].Chinese Health Economics,2014,33(10):5-7.
[2]CHEN X,WANG J.Matching Method for Medical Service Supply and Demand Considering Bodies’ Psychological Behavior Based on Intelligent Platform[J].Operations Research and Ma-nagement Science,2018,27(10):125-132.
[3]DONG T S,ZHANG M K.Practice and Thinking of Using Appointment Service of Hospital Outpatient in Telemedicine Consultation Scheduling Work[J].Chinese Hospital Management,2017,37(1):40-41.
[4]LU W,GAO P,ZHAI Y K.An Adaptive RecommendationMethod for Telemedicine Specialists with Feedback Adjustment[J].Journal of Systems & Management,2023,32(5):960-975.
[5]PANDA S K,MOHANTY S N.Time Series Forecasting andModelling of Food Demand Supply Chain based on Regressors Analysis[J].IEEE Access,2023,11:42679-42700.
[6]WANG Q,JIANG H,QIU M,et al.TGAE:Temporal GraphAutoencoder for Travel Forecasting[J].IEEE Transactions on Intelligent Transportation Systems,2022,24(8):8529-8541.
[7]RUNGE J,ZMEUREANU R.Deep learning forecasting forelectric demand applications of cooling systems in buildings[J].Advanced Engineering Informatics,2022,53:101674.
[8]XUE G,LIU S,REN L,et al.Forecasting hourly attractiontourist volume with search engine and social media data for decision support[J].Information Processing & Management,2023,60(4):103399.
[9]BUCKINGHAM-JEFFERY E,MORBEY R,HOUSE T,et al.Correcting for day of the week and public holiday effects:improving a national daily syndromic surveillance service for detecting publ ic health threats[J].BMC Public Health,2017,17(1):1-9.
[10]OUYANG H B,HUANG K,YAN H J.Prediction of Financial Time Series Based on LSTM Neural Network[J].Chinese Journal of Management Science,2020,28(4):27-35.
[11]CHEN W J,YU L,LI J L.Forecasting Teleconsultation Demand with an Ensemble Attention-Based Bidirectional Long Short-Term Memory Model[J].International Journal of Computa-tional Intelligence Systems,2021,14(1):821-833.
[12]TANG Z P,WU J C,ZAHNG T T,et al.An EEMD-LSTM Model Based Research on Early Warning of the Systematic Risk in China Insurance Industry[J].Management Review,2022,34(9):27-34.
[13]LIU Y M,LI Y,ZHAO Z Y.Forecasting Price Trend of Constituent Stocks Using RF-LSTM Model Based on Feature Selection[J].Statistics & Decision,2021,37(1):157-160.
[14]LIU S,YAO E.Holiday passenger flow forecasting based on the modified least-square support vector machine for the metro system[J].Journal of Transportation Engineering,Part A-Systems,2017,143(2):1-8.
[15]YAO E,HONG J,PAN L,et al.Forecasting Passenger Flow Distribution on Holidays for Urban Rail Transit Based on Destination Choice Behavior Analysis[J].Journal of Advanced Transportation,2021,2021:1-13.
[16]HOCHREITER S,SCHMIDHUBER J.Long Short-Term Memory[J].Neural Computation,1997,9(8):1735-1780.
[17]KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2015.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!