计算机科学 ›› 2024, Vol. 51 ›› Issue (10): 112-118.doi: 10.11896/jsjkx.240400118

• 智能教育技术及应用 • 上一篇    下一篇

基于ConvNeXt的智慧课堂中的眼部情感识别及其可视化

张立国, 徐鑫, 董宇欣   

  1. 哈尔滨工程大学计算机科学与技术学院 哈尔滨 150001
  • 收稿日期:2024-04-17 修回日期:2024-07-08 出版日期:2024-10-15 发布日期:2024-10-11
  • 通讯作者: 董宇欣(dongyuxin@hrbeu.edu.cn)
  • 作者简介:(zhangliguo@hrbeu.edu.cn)
  • 基金资助:
    中央高校基本科研业务费专项资金;哈尔滨工程大学教学改革项目:多学科联动式导师团队建设规模和结构发展规划设计(3072024XX0601)

Eye Emotion Recognition and Visualization in Smart Classrooms Based on ConvNeXt

ZHANG Liguo, XU Xin, DONG Yuxin   

  1. College of Computer Science and Technology,Harbin Engineering University,Harbin 150001,China
  • Received:2024-04-17 Revised:2024-07-08 Online:2024-10-15 Published:2024-10-11
  • About author:ZHANG Liguo,born in 1981,Ph.D,professor,Ph.D supervisor,is a member of CCF(No.57424S).His main research interests include artificial intelligence,digital image processing and multimedia data processing.
    DONG Yuxin,born in 1974,Ph.D,professor,Ph.D supervisor, is a member of CCF(No.09158M).Her main research interests include machine learning and computer vision and big data and intelligent applications.
  • Supported by:
    Fundamental Research Funds for the Central Universities of Ministry of Education of China and Harbin Engineering University Education Reform Program:Design of Development Planning for the Scale and Structure of Multidisciplinary Collaborative Mentor Teams(3072024XX0601).

摘要: 通过面部表情识别和情绪分析,观测者能够根据所观察到的实体状态了解学习者的学习效果,如通过课堂中学生所展现出的情绪波动,来辨别学生对新知识的接受程度,从而更便捷、直观地理解学生的疑惑。然而,在许多情况下,学生的面部可能会被学习用品、前排同学等遮挡,导致面部情感识别准确性不高。与整张脸相比,眼部区域作为情感表达的核心部位,通常会受到观察者更多的关注,在相同的课堂环境下眼部也更不容易被遮挡。眼睛是展现情感最重要的部位之一,在情绪变化期间的眼部表情变化可以提供更多的情绪信息。特别是当一个人承受外部压力并必须抑制面部表情时,眼神很难欺骗。因此,对眼部复杂表情进行情绪识别和分析具有重要研究价值和挑战性。针对这种挑战,首先构建了一个用于分类眼部表情复杂情绪的数据集,包括5种基本情绪,另外还定义了5种复杂情绪。其次,提出了一种新颖的模型,根据数据集中输入图像中提取的眼部特征准确地对情绪进行分类。最后,介绍了一种基于眼部识别的情绪分析可视化方法,该方法可以分析复杂情感和基础情感的波动,并为基于眼部进行进一步的情绪分析提供了新的解决方案。

关键词: 智慧课堂, ConvNeXt, 数据可视化, 情绪识别, 眼部

Abstract: By leveraging facial expression recognition and emotion analysis,observers can understand learners' learning outcomes through the observed physical states.For instance,fluctuations in students' emotions displayed in the classroom can be used to discern their level of acceptance of new knowledge,facilitating a more convenient and intuitive understanding of students' confusion.However,in many cases,students' faces may be obstructed by learning materials,classmates in the front row,etc.,leading to inaccuracies in facial emotion recognition.Compared to the entire face,the eye region,as a core area of emotional expression,typically receives more attention from observers,and in the same classroom environment,the eyes are less likely to be obstructed.The eyes are one of the most important parts for displaying emotions,and changes in eye expressions during emotional fluctuations can provide more emotional information.Especially when a person is under external pressure and tend to suppress facial expressions,it is difficult to deceive with the gaze.Therefore,recognizing and analyzing complex eye expressions for emotions holds significant research value and challenges.To address this challenge,firstly,a dataset for classifying complex emotions in eye expressions is constructed,including five basic emotions,as well as defining five complex emotions.Secondly,a novel model is proposed to accurately classify emotions based on eye features extracted from input images in the dataset.Finally,a visualization method for emotion analysis based on eye recognition is introduced,which can analyze fluctuations in complex and basic emotions.This method provides a new solution for further eye-based emotion analysis.

Key words: Wisdom classroom, ConvNeXt, Data visualization, Emotion recognition, Eye area

中图分类号: 

  • TP183
[1]ZENG H P,SHU X H,WANG Y B,et al.EmotionCues:Emo-tion-Oriented Visual Summarization of Classroom Videos[J].IEEE Transactions on Visualization and Computer Graphics,2021,27(7):3168-3181.
[2]PEKRUN,R,LINNENBRINK-GARCIA L.International handbook of emotions in education[M]//Educational psychology handbook series.New York:Routledge,Taylor & Francis Group,2014.
[3]BOUHLAL M,AARIKA K,ABDELOUAHID R A,et al.Emotions recognition as innovative tool for improving students' performance and learning approaches[J].Procedia Computer Science,2020,175:597-602.
[4]TRACY J L D.RANDLES D,STECKLER C M.The nonverbal communication of emotions[J].Curr.Opin.Behav.Sci.,2015,3:25-30.
[5]DAVISON A K,LANSLEY C,COSTEN N, et al.SAMM:ASpontaneous Micro-Facial Movement Dataset[J].IEEE Trans.Affect.Comput.,2018,9(1):116-129.
[6]SHU L,XIE J,YANG M,et al.A Review of Emotion Recognition Using Physiological Signals[J].Sensors,2018,18(7):2074.
[7]LEWIS M.Handbook of emotions[M].New York:GuilfordPress,2008.
[8]RANGANATHAN H,CHAKRABORTY S,PANCHANATHANS.Multimodal Emotion Recognition using Deep Learning Architectures[C]//2016 IEEE Winter Conference on Applications of Computer Vision(WACV).2016:1-9.
[9]ZHANG S,WANG X,ZHANG G,et al.Multimodal Emotion Recognition Integrating Affective Speech with Facial Expression[J].IEEE Transactions on Visualization and Computer Gra-phics,2014,10:526-537.
[10]ZHANG C,NI S F,FAN Z P.3D Talking Face With Persona-lized Pose Dynamics[J].IEEE Transactions on Visualization and Computer Graphics,2023,29(2):1438-1449.
[11]GOODFELLOW I J,ERHAN D,CARRIER P L.Challenges in Representation Learning:A Report on Three Machine Learning Contests[C]//International Conference on Neural Information Processing.Berlin,Heidelberg:Springer,2013:117-124.
[12]YANG D,ALSADOON A,PRASAD P W C,et al.An EmotionRecognition Model Based on Facial Recognition in Virtual Learning Environment[J].Procedia Computer Science,2018,125:2-10.
[13]TAUTKUTE I,TRZCINSKI T,BIELSKI A.I Know How You Feel:Emotion Recognition with Facial Landmarks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).2018.
[14]JYOTI S,SHARMA G,DHALL A.Expression EmpoweredResiDen Network for Facial Action Unit Detection [C]//IEEE International Conference on Automatic Face & Gesture Recognition(FG 2019).Lille,France:IEEE,1-8.
[15]LEE J,KIM S,KIM S,et al.Context-Aware Emotion Recognition Networks[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV).IEEE,2020.
[16]KAMBLE K,SENGUPTA J.A Comprehensive Survey on Emo-tion Recognition Based on Electroencephalograph(EEG) Signals[J].Multimedia Tools and Applications,2023,82(18):27269-27304.
[17]SUN L,LIAN Z,LIU B,et al.MAE-DFER:Efficient Masked Autoencoder for Self-supervised Dynamic Facial Expression Recognition [C]//Proceedings of the 31st ACM International Conference on Multimedia.Ottawa,ON,Canada:ACM,2023:6110-6121.
[18]KING D E.Dlib-ml:A Machine Learning Toolkit[J].Journal ofMachine Learning Research,2009,10(3):1755-1758.
[19]TERZIS V,MORIDIS C N,ECONOMIDES A A.Measuring Instant Emotions During a Self-assessment Test:The Use of Face-Reader[C]//Proceedings of the 7th International Conference on Methods and Techniques in Behavioral Research.2010.
[20]PAN T,YE Y,ZHANG Y,et al.Online Multi-hypergraph Fusion Learning for Cross-subject Emotion Recognition [J].Information Fusion,2024,108:102338.
[21]LUCEY P,COHN J F,KANADE T,et al.The Extended Cohn-Kanade Dataset(CK+):A Complete Dataset for Action Unit and Emotion-specified Expression [C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops.San Francisco,CA,USA:IEEE,2010:94-101.
[22]PANTIC M,VALSTAR M,RADEMAKER R,et al.Web-BasedDatabase for Facial Expression Analysis,[C]//2005 IEEE International Conference on Multimedia and Expo.Amsterdam,The Netherlands:IEEE,2005:317-321.
[23]LIU S,HAO J.Generating Talking Face With Controllable EyeMovements by Disentangled Blinking Feature[J].Ieee Transactions On Visualization and Computer Graphics,2023,29(12):5050-5061.
[24]RUSSELL J A,MEHRABIAN A.Evidence for a Three-Factor Theory of Emotions [J].Journal of Research in Personality,1977,11(3):273-294.
[25]SUN K,YU J,HUANG Y,et al.An Improved Valence-Arousal Emotion Space for Video Affective Content Representation and Recognition [C]//2009 IEEE International Conference on Multimedia and Expo.New York,NY,USA:IEEE,2009.
[26]ZHANG K,ZHANG Z,LI Z,et al.Joint Face Detection andAlignment Using Multitask Cascaded Convolutional Networks [J].IEEE Signal Processing Letters,2016,23(10):1499-1503.
[27]HE K,ZHANG X,REN S,et al.Deep Residual Learning forImage Recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas,NV,USA:IEEE,2016.
[28]LIU Z,MAO H,WU C Y,et al.A ConvNet for the 2020s[J].arXiv:2201.03545,2022.
[29]KRIZHEVSKY A.Learning Multiple Layers of Features fromTiny Images[EB/OL].http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.
[30]SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-CAM:Visual Explanations From Deep Networks via Gradient-Based Localization [J].International Journal of Computer Vision,2020,128(2):336-359.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!