计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 221100265-11.doi: 10.11896/jsjkx.221100265

• 大数据&数据科学 • 上一篇    下一篇

电子病历可视化研究综述

叶显忆1, 柴艳妹1, 郭凤英2   

  1. 1 中央财经大学信息学院 北京 100081
    2 北京中医药大学管理学院 北京 100029
  • 发布日期:2023-11-09
  • 通讯作者: 柴艳妹(chai-4@163.com)
  • 作者简介:(ye__xy@163.com)
  • 基金资助:
    中国高校产学研创新基金(2021LDA12004);中央财经大学科研创新团队支持计划;中央高校基本科研业务费专项资金

Survey of Medical Data Visualization Based on EHR

YE Xianyi1, CHAI Yanmei1, GUO Fengying2   

  1. 1 School of Information,Central University of Finance and Economics,Beijing 100081,China
    2 School of Management,Beijing University of Chinese Medicine,Beijing 100029,China
  • Published:2023-11-09
  • About author:YE Xianyi,born in 1999,postgraduate.His main research interests include data analysis and data visualization.
    CHAI Yanmei,born in 1978,Ph.D,assistant professor,master supervisor,is a member of China Computer Federation.Her main research interests include image processing,pattern recognition and smarter learning.
  • Supported by:
    China University Industry-Academia-Research Innovation Fund(2021LDA12004),Supporting Plan for Scientific Research and Innovation Team of Central University of Finance and Economics and Fundamental Research Funds for the Central Universities.

摘要: 随着医疗信息化技术的不断发展,对电子健康记录(EHR)数据的深入挖掘和有效利用在辅助医疗领域发挥着越来越大的作用。对近十年来基于电子病历的数据可视化方法和技术进行了总结、梳理和展望。首先,利用知识图谱方法对该领域的研究热点和发展趋势进行梳理;然后,从文献中提取出可视化技术的一般流程和4项任务,即对比分析、异常检测、模式发现和决策支持;再分别对具有代表性的技术方法进行描述、分类和评价;最后,归纳出电子病历可视化研究中的5种可视化表现形式和3个可视化维度,并在此基础上探讨各种方法的适用场景。分析发现,电子病历可视化技术不仅可帮助医护人员在临床诊断中更直观地了解病人的状态,也可帮助研究人员分析挖掘EHR数据的价值,对互联网医疗和智慧医疗的发展具有积极意义。但目前该领域的研究也存在中文医疗词典和知识库较少、不能有效处理海量时变数据以及缺少统一和量化的评价方法等问题。

关键词: 电子健康记录, 数据可视化, 电子病历可视化

Abstract: With the development of medical information technology,the effective utilization of electronic health records(EHR) data is playing an increasingly important role in the field of assisted medical care.This paperreviews the data visualization methodsand technologies based on EHR in recent ten years.Firstly,the knowledge map method isused to show the research hotspots and development trends of EHR data visualization in the past ten years.Then the general process and four tasks of visualization technology are extracted from the literature,including comparative analysis,anomaly detection,pattern discovery and decision support.Next,the representative researchesarefurtherly summarized,classified and evaluated.Finally,5 kinds of visualization models and 3 visual dimensions of EHR aresummarized and the applicable scenarios of various methods are discussed based on the above research frameworks.It is found that the visualization technology based on EHR could not only help doctors and nurses understand patients’ status more intuitively in clinical diagnosis,but also help researchers analyze and mine the value of EHR data.At the same time,it is also of positive significance for the development of Internet medicine and intelligent medicine.However,there are still some problems in this field,such as lack of authoritative Chinese medical dictionary and knowledge database,hard to process the massive time-varying EHR data,and there is no unified and quantitative evaluation of visualization methods.

Key words: Electronic health records, Data visualization, Electronic medical record visualization

中图分类号: 

  • TP391
[1]DICKINSON G,FISCHETTI L,HEARD S.Hl7 EHR system functional model draft standard for trial use[J].Health Level,2004,7.
[2]ZHANG T,ZONG W H.Summary of development and current situation of electronic health records[J].Journal of Chinese Health Information Management,2011,8(3):83.
[3]NIGHTINGALE F.Notes on matters affecting the health,efficiency,and hospital administration of the British Army.Founded chiefly on the experience of the late War[M].Harrison and Sons,1858.
[4]WANG Y,ZONG W H.Summary of medical big data visualization research[J].Journal of Frontiers of Computer Science and Technology,2017,11(5):681-699.
[5]LIU C H,ZHANG H,HUI W,et al.Analysis and prospects of the current situation of medical data visualization research at home and abroad[J].WORLD SCI-TECH R&D,2021,43(3):312-330.
[6]KOPANITSA G,HILDEBRAND C,STAUSBERG J,et al.Visualization of medical data based on EHR standards[J].Me-thods of Information in Medicine,2013,52(1):43-50.
[7]WEST V L,BORLAND D,HAMMOND W E.Innovative information visualization of electronic health record data:a systematicreview[J].Journal of the American Medical Informatics Asso-ciation,2015,22(2):330-339.
[8]CHEN C.CiteSpace II:Detecting and visualizing emergingtrends and transient patterns in scientific literature[J].Journal of the American Society for Information Science and Technology,2006,57(3):359-377.
[9]LIU K,ZHOU X Z,ZHOU D R.Data visualization research and development[J].Computer Engineering,2002,28(8):1-2.
[10]KEIM D A,KOHLHAMMER J,ELLIS G,et al.Masteringthe Information Age:Solving Problems with Visual Analytics[M].Florian Mansmann,2010.
[11]PERER A,GOTZ D.Data-driven exploration of care plans forpatients[C]//Extended Abstracts of the CHI Conference on Human Factors in Computing Systems.Paris:ACM,2013:439-444.
[12]KRAUSE J,PERER A,NG K.Interacting with predictions:Visual inspection of black-box machine learning models[C]//Proceedings of the CHI Conference on Human Factors in Computing Systems.New York:ACM,2016:5686-5697.
[13]GOTZ D,WANG F,PERER A.A methodology for interactive mining and visual analysis of clinical event patterns using electronic health record data[J].Journal of Biomedical Informatics,2014,48:148-159.
[14]MALIK N,SHNEIDERMAN B,DU F,et al.High-Volume Hypothesis Testing:Systematic Exploration of Event Sequence Comparisons[J].ACM Transactions on Interactive Intelligent Systems,2016,6(1):1-23.
[15]KRAUSE J,PERER A,STAVROPOULOS H.Supporting Itera-tive Cohort Construction with Visual Temporal Queries[J].IEEE Transactions on Visualization and Computer Graphics,2015,22(1):91-100.
[16]MALIK S,DU F,MONROE M,et al.Cohort Comparison of Event Sequences with Balanced Integration of Visual Analytics and Statistics[C]//Intelligent User Interfaces.ACM,2015.
[17]GUO S,XU K,ZHAO R,et al.Eventthread:Visual summarization and stage analysis of event sequence data[J].IEEE Tran-sactions on Visualization and Computer Graphics,2017,24(1):56-65.
[18]SHEHARYAR A,RUH A,ARISTOVA M,et al.Visual analysis of regional myocardial motion anomalies in longitudinal studies[J].Computers & Graphics,2019,83(Oct.):62-76.
[19]VROTSOU K,JOHANSSON J,COOPER M.Activitree:Inter-active visual exploration of sequences in event-based data using graph similarity[J].IEEE Transactions on Visualization and Computer Graphics,2009,15(6):945-952.
[20]FRANKLIN L,PLAISANT C,MINHAZUR RAHMAN K,et al.TreatmentExplorer:an interactive decision aid for medical risk communication and treatment exploration[J].Interacting with Computers,2016,28(3):238-252.
[21]ROGERS J,SPINA N,NEESE A,et al.Composervisual cohort analysis of patient outcomes[J].Applied Clinical Informatics,2019,10(2):278-285.
[22]LAW P M,LIU Z,MALIK S,et al.MAQUI:Interweaving queries and pattern mining for recursive event sequence exploration[J].IEEE Transactions on Visualization andComputer Gra-phics,2018,25(1):396-406.
[23]GUO X J.model-based research of visualization in DSS[J].Daqing Petroleum Institute,1997(1):22-25.
[24]ClARKSON E,ZUTTY J,RAVAL M V.A Visual DecisionSupport Tool for Appendectomy Care[J].Journal of Medical Systems,2018,42(3):52.
[25]KWON B C,CHOI M J,KIM J T,et al.RetainVis:Visual Analytics with Interpretable and Interactive Recurrent Neural Networks on Electronic Medical Records[J].arXiv:1805.10724,2018.
[26]PLAISANT C,MILASH B,ROSE A,et al.Lifelines:visualizing personal histories[C]//Proceedings of the CHI Conference on Human Factors in Computing Systems.ACM,1996:221-227.
[27]WANG T D,PLAISANT C,QUINN A J,et al.Aligning temporal data by sentinel events:discovering patterns in electronic health records[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.2008:457-466.
[28]DU F,SHNEIDERMAN B,PLAISANT C,et al.Coping withvolume and variety in temporal event sequences:strategies for sharpening analytic focus[J].IEEE Transactions on Visualization and Computer Graphics,2017,23(6):1636-1649.
[29]SHNEIDERMAN B,PLAISANT C.Sharpening analytic focusto cope with big data volume and variety[J].IEEE Computer Graphics and Applications,2015,35(3):10-14.
[30]PARK H,CHOI J.V-Model:a new perspective for EHR-based phenotyping[J].Bmc Medical Informatics & Decision Making,2014,14(1):90.
[31]JIN Z,CUI S,GUO S,et al.Carepre:An intelligent clinical decision assistance system.ACM Transactions on Computing for Healthcare,2020,1(1):1-20.
[32]BURCH M,BECK F,DIEHL S.Timeline trees:visualizing se-quences of transactions in information hierarchies[C]//Procee-dings of the Working Conference on Advanced Visual Interfaces.2008:75-82.
[33]PERER A,SUN J M.MatrixFlow:temporal network visual analytics to track symptom evolution during disease progression[J].AMIA Annual Symposium Proceedings Archive,2012,2012:716-725.
[34]HEER J,PERER A.Orion:A System for Modeling,Transfor-mation and Visualization of Multi-dimensional Heterogeneous Networks[C]//IEEE Conference on Visual Analytics Science and Technology(VAST 2011).2011.
[35]BORLAND D,HINZ E M P,HERHOLD L A,et al.Path maps:Visualization of trajectories in large-scale temporal data[J].Poster Abstracts of IEEE VIS,2015,2015.
[36]HOFFMAN P,GRINSTEIN G,MARX K,et al.DNA visualand analytic data mining[C]//Proceedings.Visualization’97(Cat.No.97CB36155).IEEE,1997:437-441.
[37]JOSHI R,SZOLOVITS P.Prognostic Physiology:Modeling Patient Severity in Intensive Care Units Using Radial Domain Folding[J].Amia.annual Symposium Proceedings,2013,2012:1276.
[38]WANG Y.Research and application of visualization algorithmbased on medical big data[D].Tianjin:Tianjin Polytechnic University,2018.
[39]JIANG T T,XIAO W D,ZHANG C.Text visualization method for time series based on Sankey diagram[J].Application Research of Computers,2016,33(9):2683-2687.
[40]WONGSUPHASAWAT K,GOTZ D.Outflow:Visualizing patient flow by symptoms and outcome[C]//IEEE VisWeek Workshop on Visual Analytics in Healthcare,Providence,Rhode Island,USA.American Medical Informatics Association,2011:25-28.
[41]WONGSUPHASAWAT K,GOTZ D.Exploring flow,factors,and outcomes of temporal event sequences with the outflow visualization[J].IEEE Transactions on Visualization and Computer Graphics,2012,18(12):2659-2668.
[42]ZHANG Z,GOTZ D,PERER A.Iterative cohort analysis andexploration[J].Information Visualization,2015,14(4):289-307.
[43]PERER A,SUN J.Matrixflow:temporal network visual analy-tics to track symptom evolution during disease progression[C]//AMIA Annual Symposium Proceedings.Americanm Medical Informatics Association,2012.
[44]PERER A,WANG F.Frequence:Interactive mining and visuali-zation of temporal frequent event sequences[C]//Proceedings of the International Conference on Intelligent User Interfaces.ACM,2014:153-162.
[45]PERER A,WANG F,HU J.Mining and exploring care pathways from electronic medical records with visual analytics[J].Journal of Biomedical Informatics,2015,56:369-378.
[46]GOTZ D,STAVROPOULOS H.Decisionflow:Visual analytics for high-dimensional temporal event sequence data[J].IEEE Transactions on Visualization and Computer Graphi-cs,2014,20(12):1783-1792.
[47]NGUYEN P H,HENKIN R,CHEN S,et al.Vasabi:Hierarchical user profiles for interactive visual user behaviour analytics[J].IEEE Transactions on Visualization and Computer Graphics,2019,26(1):77-86.
[48]KWON B C,CHOI M J,KIM J T,et al.Retainvis:Visual analytics with interpretable and interactive recurrent neural networks on electronic medical records[J].IEEE Transactions on Visualization and Computer Graphics,2018,25(1):299-309.
[49]KWON B C,ANAND V,SEVERSON K A,et al.Dpvis:Visual analytics with hidden markov models for disease progression pathways[J].arXiv:1904.11652V2,2019.
[50]ROGERS J,SPINA N,NEESE A,et al.Composervisual cohort analysis of patient outcomes[J].Applied Clinical Informatics,2019,10(2):278-285.
[51]KWON B C,VERMA J,PERER A.Peekquence:Visual analytics for event sequence data[C]//ACM SIGKDD 2016 Workshop on Interactive Data Exploration and Analytics.2016.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!