计算机科学 ›› 2025, Vol. 52 ›› Issue (6): 274-285.doi: 10.11896/jsjkx.240600006

• 计算机图形学&多媒体 • 上一篇    下一篇

FDiff-Fusion:基于模糊逻辑驱动的医学图像扩散融合网络分割模型

耿胜, 丁卫平, 鞠恒荣, 黄嘉爽, 姜舒, 王海鹏   

  1. 南通大学人工智能与计算机学院 江苏 南通 226019
  • 收稿日期:2024-06-03 修回日期:2024-08-30 出版日期:2025-06-15 发布日期:2025-06-11
  • 通讯作者: 丁卫平(dwp9988@163.com)
  • 作者简介:(gszs369@163.com)
  • 基金资助:
    国家重点研发计划(2024YFE0202700);国家自然科学基金(62006128,62102199,62471259,62406153);江苏省自然科学基金(BK20231337);江苏省双创博士计划;江苏省高等学校自然科学研究面上项目(23KJB520031,24KJB520032);南通市科技局基础科学研究项目(JC2021122);中国博士后科学基金(2022M711716);江苏省实践创新计划资助项目(SJCX24_2017)

FDiff-Fusion:Medical Image Diffusion Fusion Network Segmentation Model Driven Based onFuzzy Logic

GENG Sheng, DING Weiping, JU Hengrong, HUANG Jiashuang, JIANG Shu, WANG Haipeng   

  1. School of Artificial Intelligence and Computer Science,Nantong University,Nantong,Jiangsu 226019,China
  • Received:2024-06-03 Revised:2024-08-30 Online:2025-06-15 Published:2025-06-11
  • About author:GENG Sheng,born in 2001,postgra-duate.His main research interests include granular computing,fuzzy theory and deep learning.
    DING Weiping,born in 1979,Ph.D,professor,Ph.D supervisor.His main research interests include data mining,machine learning,granular computing,evolutionary computing,and big data analytics.
  • Supported by:
    National Key R&D Program of China(2024YFE0202700),National Natural Science Foundation of China(62006128,62102199,62471259,62406153),Natural Science Foundation of Jiangsu Province(BK20231337),Double-Creation Doctoral Program of Jiangsu Province,General Program of the Natural Science Foundation of Jiangsu Province Higher Education Institutions(23KJB520031,24KJB520032),Basic Science Research Program of Nantong Science and Technology Bureau(JC2021122),China Postdoctoral Science Foundation(2022M711716) and Postgraduate Research & Practice Innovation Program of Jiangsu Province(SJCX24_2017).

摘要: 医学图像分割在临床诊疗和病理分析中具有重要的应用价值。近年来,去噪扩散模型在图像分割建模方面取得了显著成功,其能够更好地捕获图像中的复杂结构和细节信息。然而,利用去噪扩散模型进行医学图像分割的方法大多忽略了分割目标的边界不确定和区域模糊因素,从而造成了最终分割结果的不稳定性和不准确性。为了解决这一问题,提出了一种基于模糊逻辑驱动的医学图像扩散融合网络分割模型(FDiff-Fusion)。该模型通过将去噪扩散模型集成到经典U-Net网络中,有效地从输入医学图像中提取丰富的语义信息。由于医学图像的分割目标边界不确定性和区域模糊化现象普遍存在,因此在U-Net网络的跳跃路径上设计了一种模糊学习模块。该模块为输入的编码特征设置多个模糊隶属度函数,以描述特征点之间的相似程度,并对模糊隶属度函数应用模糊规则处理,从而增强了模型对不确定边界和模糊区域的建模能力。此外,为了提高模型分割结果的准确性和鲁棒性,在测试阶段引入了基于迭代注意力特征融合的方法。该方法将局部上下文信息添加到注意力模块中的全局上下文信息中,以融合每个去噪时间步的预测结果。实验结果显示,与现有的先进分割网络相比,FDiff-Fusion在BRATS 2020脑肿瘤数据集上获得的平均Dice分数和HD95距离分别为84.16%和2.473mm,在BTCV腹部多器官数据集上获得的平均Dice分数和HD95距离分别为83.82%和7.98mm,表现出良好的分割性能。

关键词: 去噪扩散模型, U-Net网络, 医学图像分割, 模糊学习, 迭代注意力特征融合

Abstract: Medical image segmentation has important application value in clinical diagnosis,treatment and pathological analysis.In recent years,denoising diffusion models have achieved remarkable success in image segmentation modeling,which can better capture complex structure and detail information in images.However,most of the methods using the denoising diffusion model for medical image segmentation ignore the boundary uncertainty and region ambiguity of the segmentation target,resulting in the instability and inaccuracy of the final segmentation results.In order to solve this problem,a medical image diffusion fusion network segmentation model driven based on fuzzy logic(FDiff-Fusion) is proposed.By integrating the denoising diffusion model into the classical U-Net network,this model can effectively extract rich semantic information from inputting medical images.Since the boundary uncertainty and region blurring of medical image segmentation are common,a fuzzy learning module is designed on the jump path of U-Net network.The module sets several fuzzy membership functions for the input encoded features to describe the similarity degree between the feature points,and applies fuzzy rules to the fuzzy membership functions,thus enhancing the modeling ability of the model to the uncertain boundary and fuzzy region.In addition,in order to improve the accuracy and robustness of the model segmentation results,a method based on iterative attention feature fusion is introduced in the test phase,which adds local context information to the global context information in the attention module to fuse the prediction results of each denoising time step.Experimental results show that compared with existing advanced segmentation networks,the average Dice score and the average HD95 distance obtained by FDiff-Fusion on BRATS 2020 brain tumor dataset are 84.16% and 2.473mm,respectively.The mean Dice score and the mean HD95 distance obtained on BTCV abdominal multi-organ dataset are 83.41% and 7.98mm,respectively,showing good segmentation performance.

Key words: Denoising diffusion model, U-Net network, Medical image segmentation, Fuzzy learning, Iterative attention feature fusion

中图分类号: 

  • TP391
[1]ULLAH Z,USMAN M,JEON M,et al.Cascade multiscale residual attention cnns with adaptive roi for automatic brain tumor segmentation[J].Information Sciences,2022,608:1541-1556.
[2]TANG Y,YANG D,LI W,et al.Self-supervised pre-training of swin transformers for 3d medical image analysis[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:20730-20740.
[3]HE Y,GE R,QI X,et al.Learning better registration to learn better few-shot medical image segmentation:Authenticity,diversity,and robustness[J].IEEE Transactions on Neural Networks and Learning Systems,2022,35(2):2588-2601.
[4]CHEN L,BENTLEY P,MORI K,et al.DRINet for medicalimage segmentation[J].IEEE Transactions on Medical Imaging,2018,37(11):2453-2462.
[5]LIU F,ZHANG Z,ZHOU R.Automatic modulation recognition based on CNN and GRU[J].Tsinghua Science and Technology,2021,27(2):422-431.
[6]SUN P,ZHANG R,JIANG Y,et al.Sparse R-CNN:An end-to-end framework for object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(12):15650-15664.
[7]ZHANG Z M,GUO Y,MA C X,et al.GT-4S:Graph Trans-former for Scene Sketch Semantic Segmentation[J] Journal of Software,2025,36(3):1375-1389.
[8]ZHANG C,JIANG W,ZHANG Y,et al.Transformer and CNN hybrid deep neural network for semantic segmentation of very-high-resolution remote sensing imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-20.
[9]XIE Y,ZHANG J,SHEN C,et al.Cotr:Efficiently bridging cnn and transformer for 3d medical image segmentation[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2021:24th International Conference,Strasbourg,France,September 27-October 1,2021,Proceedings,Part III 24.Springer International Publishing,2021:171-180.
[10]OLAF R,FISCHER P,BROX T.U-net:Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015:18th International Conference,Munich,Germany,October 5-9,2015,proceedings,part III 18.Springer International Publishing,2015:234-241.
[11]ANDRIY M.3D MRI brain tumor segmentation using autoencoder regularization[C]//Brainlesion:Glioma,Multiple Sclerosis,Stroke and Traumatic Brain Injuries:4th International Workshop,BrainLes 2018,Held in Conjunction with MICCAI 2018,Granada,Spain,September 16,2018,Revised Selected Papers,Part II 4.Springer International Publishing,2019:311-320.
[12]KINGMA D,WELLING M.Auto-encoding variational bayes[J].arXiv:1312.6114,2013.
[13]WANG W,CHEN C,DING M,et al.Transbts:Multimodalbrain tumor segmentation using transformer[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,2021:109-119.
[14]HATAMIZADEH A,TANG Y,NATH V,et al.Unetr:Transformers for 3d medical image segmentation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2022:574-584.
[15]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.Animage is worth 16×16 words:Transformers for image recognition at scale[J].arXiv:2010.11929,2020.
[16]HATAMIZADEH A,NATH V,TANG Y,et al.Swin unetr:Swin transformers for semantic segmentation of brain tumors in mri images[C]//International MICCAI Brainlesion Workshop.Cham:Springer International Publishing,2021:272-284.
[17]LIU Z,LIN Y,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:10012-10022.
[18]CHEN J,LU Y,YU Q,et al.Transunet:Transformers make strong encoders for medical image segmentation[J].arXiv:2102.04306,2021.
[19]HUANG D M,DAI L,WEI L F et al.A secure outsourcing fusion denoising scheme for multi-frame remote sensing images[J].Journal of Computer Research and Development,2017,54(10):2378-2389.
[20]GOYAL B,DOGRA A,AGRAWAL S,et al.Image denoising review:From classical to state-of-the-art approaches[J].Information Fusion,2020,55:220-244.
[21]CROITORU F,HONDRU V,IONESUC R,et al.Diffusionmodels in vision:A survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(9):10850-10869.
[22]YANG L,ZHANG Z,SONG Y,et al.Diffusion models:A comprehensive survey of methods and applications[J].ACM Computing Surveys,2023,56(4):1-39.
[23]WU J,FU R,FANG H,et al.Medsegdiff:Medical image seg-mentation with diffusion probabilistic model[C]//Medical Imaging with Deep Learning.PMLR,2024:1623-1639.
[24]WU J,JI W,FU H,et al.Medsegdiff-v2:Diffusion based medical image segmentation with transformer[J].arXiv:2301.11798,2023.
[25]XING Z,WAN L,FU H,et al.Diff-unet:A diffusion embedded network for volumetric segmentation[J].arXiv:2303.10326,2023.
[26]WOLLEB J,ROBIN S,BIEDER F,et al.Diffusion models forimplicit image segmentation ensembles[C]//International Conference on Medical Imaging with Deep Learning.PMLR,2022:1336-1348.
[27]ZHOU T Y,DING W P,HUANG J S,et al.Fuzzy Logic Guided Deep Neural Network with Multi-granularity [J].Pattern Re-cognition and Artificial Intelligence,2023,36(9):778-792.
[28]KUMAR D,AGRAWAL R K,KUMAR P.Bias-corrected intuitionistic fuzzy c-means with spatial neighborhood information approach for human brain MRI image segmentation[J].IEEE Transactions on Fuzzy Systems,2020,30(3):687-700.
[29]李季,胡锦萍,乔敏,王艳.一种针对脑部图像分割强度不均匀性的改进方法[J].重庆工商大学学报(自然科学版),2023,40(1):34-39.
[30]YANG L,WANG S,LIEW A.Fine-Grained Lip Image Segmentation using Fuzzy Logic and Graph Reasoning[J].IEEE Tran-sactions on Fuzzy Systems, 2024,32(2):349-359.
[31]ZHOU M,SHANG C,LI G,et al.Transformation-based fuzzy rule interpolation with Mahalanobis distance measures supported by Choquet integral[J].IEEE Transactions on Fuzzy Systems,2022,31(4):1083-1097.
[32]SONG S,JIA Z,YANG J,et al.Image segmentation based onfuzzy low-rank structural clustering[J].IEEE Transactions on Fuzzy Systems,2023,31(7):2153-2166.
[33]LIU Z,TAN Y,HE Q,et al.SwinNet:Swin transformer drives edge-aware RGB-D and RGB-T salient object detection[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,32(7):4486-4497.
[34]PHAM T.The Kolmogorov-Sinai entropy in the setting of fuzzy sets for image texture analysis and classification[J].Pattern Recognition,2016,53:229-237.
[35]LI D,ZHANG H,LI T,et al.Hybrid missing value imputation algorithms using fuzzy c-means and vaguely quantified rough set[J].IEEE Transactions on Fuzzy Systems,2021,30(5):1396-1408.
[36]HO J,JAIN A,ABBEEL P.Denoising diffusion probabilisticmodels[J].Advances in Neural Information Processing Systems,2020,33:6840-6851.
[37]NICHOL A,DHARIWAL P.Improved denoising diffusionprobabilistic models[C]//International Conference on Machine Learning.PMLR,2021:8162-8171.
[38]GAO Q,LI Z,ZHANG J,et al.CoreDiff:Contextual error-mo-dulated generalized diffusion model for low-dose CT denoising and generalization[J].arXiv:2304.01814,2023.
[39]YUE J,FANG L,XIA S,et al.Dif-fusion:Towards high color fidelity in infrared and visible image fusion with diffusion models[J].IEEE Transactions on Image Processing,2023,32:5705-5720.
[40]SONG J,MENG C,ERMON S.Denoising diffusion implicitmodels[J].arXiv:2010.02502,2020.
[41]WANG Y,LIU H,FENG Y,et al.HeadDiff:Exploring Rotation Uncertainty with Diffusion Models for Head Pose Estimation[J].IEEE Transactions on Image Processing,2024,33:1868-1882.
[42]GONG K,JOHNSON K,EL FAKHRI G,et al.PET image denoising based on denoising diffusion probabilistic model[J].European Journal of Nuclear Medicine and Molecular Imaging,2024,51(2):358-368.
[43]DING Y,YU X,YANG Y,et al.RFNet:Region-aware fusion network for incomplete multi-modal brain tumor segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:3975-3984.
[44]ULLAH Z,USMAN M JEON M,et al.Cascade multiscale residual attention cnns with adaptive roi for automatic brain tumor segmentation[J].Information sciences,2022,608:1541-1556.
[45]FANG X,YAN P.Multi-organ segmentation over partially labeled datasets with multi-scale feature abstraction[J].IEEE Transactions on Medical Imaging,2020,39(11):3619-3629.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!