计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240700195-8.doi: 10.11896/jsjkx.240700195
王晟懿1, 杨宏波2, 潘家华2, 王威廉1
WANG Shengyi1, YANG Hongbo2, PAN Jiahua2, WANG Weilian1
摘要: 文中提出了一种通过增强图像编码和非对称卷积网络的心音分类算法。与传统的基于统计特征和时频域特征提取心音的方法不同,该算法通过引入分数阶傅里叶变换(FrFT)分别对格拉姆角场(GAF)、马尔可夫场(MTF)、递归图(RP) 3种图像编码方法进行增强,构成FrFT-GAF,FrFT-MTF,FrFT-RP图像编码模块。运用上述图像编码模块将一维心音信号转换为二维编码特征图,并利用计算机视觉技术在分类任务中的优势,采用非对称卷积网络(ACNet)对心音的二维编码特征图进行分析处理,从而实现对心音的有效分类。此外,还分别对上述图像编码模块的性能进行了评估和比较。实验结果表明,在心音二分类任务中,FrFT-RP模块的分类效果最好,在数据集1和数据集2(Physio Net/CinC 2016数据集)上的准确率分别为0.981和0.977,F1分别为0.989和0.974。FrFT-MTF和FrFT-GAF模块的效果次之。使用FrFT增强图像编码特征后较以往方法有明显提升,为心音信号分类提供了新的思路和方法,有望应用于先心病机器辅助诊断。
中图分类号:
[1]MA L Y,WANG Z W,FAN J,et al.Highlights of the China Cardiovascular Health and Disease Report 2022 [J].Chinese Family Medicine,2023,26(32):3975-3994. [2]SUN S P,WANG H B,JIANG Z W,et al.Segmentation-based heart sound feature extraction combined with classifier models for a VSD diagnosis system[J].Expert Systems with Applications,2014,41(4):1769-1780. [3]CHOWDHURY M,POUDEL K,HU Y.Detecting abnormalPCG signals and extracting cardiac information employing deep learning and the shannon energy envelope[C]//2020 IEEE Signal Processing in Medicine and Biology Symposium(SPMB).IEEE,2020:1-4. [4]KAMSON A P,SHARMA L N,DANDAPAT S.Enhancement of the heart sound envelope using the logistic function amplitude moderation method[J].Computer Methods and Programs in Biomedicine,2020,187:105239. [5]VARGHEES V N,RAMACHANDRAN K I.Effective HeartSound Segmentation and Murmur Classification Using Empirical Wavelet Transform and Instantaneous Phase for Electronic Stethoscope[J].IEEE Sensors Journal,2017,17(12):3861-3872. [6]ZHANG W J,HAN J Q,DENG S W.Abnormal heart sound detection using temporal quasi-periodic features and long short-term memory without segmentation[J].Biomedical Signal Processing and Control,2019,53:101560. [7]IBRAHIM N,JAMAL N,SHA’ABANI A H,et al.A Comparative Study of Heart Sound Signal Classification Based on Temporal,Spectral and Geometric Features[C]//2020 IEEE-EMBSConference on Biomedical Engineering and Sciences(IECBES).2021:24-29. [8]ESLAMIZADEH G,BARATI R.Heart murmur detection based on wavelet transformation and a synergy between artificial neural network and modified neighbor annealing methods[J].ArtificialIntelligence in Medicine,2017,78:23-40. [9]BHATIKAR S R,DEGROFF C,MAHAJAN R L.A classifier based on the artificial neural network approach for cardiologic auscultation in pediatrics[J].Artificial Intelligence in Medicine,2005,33(3):251-260. [10]ZENG W,LIN Z X,YUAN C Z,et al.Detection of heart valve disorders from PCG signals using TQWT,FA-MVEMD,Shannon energy envelope and deterministic learning[J].Artificial Intelligence Review,2021(7):1-38. [11]CHEN J X,GUO Z H,XU X,et al.A Robust Deep Learning Framework Based on Spectrograms for Heart Sound Classification[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2024,21(4):936-947. [12]JAMIL S,ROY A M.An efficient and robust Phonocardio-graphy(PCG)-based Valvular Heart Diseases(VHD) detectionframework using Vision Transformer(ViT)[J].Computers in Biology and Medicine,2023,158:106734. [13]NOGUEIRA D M,FERREIRA C A,GOMES E F,et al.Classifying Heart Sounds Using Images of Motifs,MFCC and Temporal Features[J].Journal of Medical Systems,2019,43(6):168. [14]KUI H R,PAN J H,ZONG R,et al.Heart sound classification based on log Mel-frequency spectral coefficients features and convolutional neural networks[J].Biomedical Signal Processing and Control,2021,69:102893. [15]OBAIDAT M S.Phonocardiogram signal analysis:Techniquesand performance comparison[J].Journal of Medical Engineering &Technology,Taylor & Francis,1993,17(6):221-227. [16]LUBIS C,GONDAWIJAYA F.Heart Sound Diagnose System with BFCC,MFCC,and Backpropagation Neural Network[J].IOP Conference Series:Materials Science and Engineering,2019,508(1):012119. [17]WANG Y L,SUN J,YANG H B,et al.Classification Model of Heart Sounds in Pulmonary Hypertension Based on Time-Frequency Fusion Features[J].Computer Science,2024,51(S1):387-393. [18]ECKMANN J P,KAMPHORST S O,RUELLE D.Recurrence Plots of Dynamical Systems[J].Europhys Lett,1987,4(9):973-977. [19]WANG Z G,OATES T.Imaging Time-Series to Improve Classification and Imputation[J].arXiv.org e-Print archive,2015,arXiv:1506.00327. [20]ZHOU G,CHIEN C,CHEN J,et al.Identifying pediatric heart murmurs and distinguishing innocent from pathologic using deep learning[J].Artificial Intelligence in Medicine,2024,153:102867. [21]RICCIO D,BRANCATI N,SANNINO G,et al.CNN-basedclassification of phonocardiograms using fractal techniques[J].Biomedical Signal Processing and Control,2023,86:105186. [22]NGUYEN M T,LIN W W,HUANG J H.Heart Sound Classification Using Deep Learning Techniques Based on Log-mel Spectrogram[J].Circuits,Systems,and Signal Processing,2023,42(1):344-360. [23]RANIPA K,ZHU W P,SWAMY M N S.A novel feature-level fusion scheme with multimodal attention CNN for heart sound classification[J].Computer Methods and Programs inBiomedicine,2024,248:108122. [24]DING X H,GUO Y C,DING G G,et al.ACNet:Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV).2019:1911-1920. [25]GE B B,YANG H B,MAP Y,et al.Detection of pulmonary arterial hypertension associated with congenital heart disease based on time-frequency domain and deep learning features[J].Biomedical Signal Processing and Control,2023,81:104451. [26]ABDUH Z,NEHARY E A,WAHED M A,et al.Classification of heart sounds using fractional fourier transform based mel-frequency spectral coefficients and traditional classifiers[J].Elsevier,2020,57:101788. [27]FAN Q L,YANG H B,GUO T,et al.FrFT-Bark domain feature extraction and CNN residual shrinkage network heart sound classification algorithm[J].Journal of Yunnan University:Natural Science Edition,2023,45(3):564-574. [28]WANGP F,GONG X G,GUO Q,et al.Children’s Expression Recognition Based on Multi-Scale Asymmetric Convolutional Neural Network[J].International Journal of Advanced Computer Science and Applications(IJACSA),2024:15(7):437. [29]HOU C Q,LI J S,WANG W,et al.Second-order asymmetric convolution network for breast cancer histopathology image classification[J].Journal of Biophotonics,2022,15(5):e202100370. [30]WU J,WANG Y X,ZHANG X G.Lightweight AsymmetricConvolutional Distillation Network for Single Image Super-Resolution[J].IEEE Signal Processing Letters,2023,30:733-737. [31]WANG R S,DUAN Y F,LI Y K,et al.PCTMF-Net:heart sound classification with parallel CNNs-transformer and second-order spectral analysis[J].The Visual Computer,2023,39(8):3811-3822. [32]MAITY A,PATHAK A,SAHA G.Transfer learning basedheart valve disease classification from Phonocardiogram signal[J].Biomedical signal Processing and Control,2023,85:104805. [33]ZHANG H B,ZHANG P,WANG Z W,et al.Multi-Feature Decision Fusion Network for Heart Sound Abnormality Detection and Classification[J].IEEE Journals & Magazine,2023:1386-1397. |
|