计算机科学 ›› 2025, Vol. 52 ›› Issue (11): 339-348.doi: 10.11896/jsjkx.240900006
肖子勤, 史涯晴, 曲豫宾
XIAO Ziqin, SHI Yaqing, QU Yubin
摘要: 深度神经网络(Deep Neural Networks,DNNs)已在诸多领域实现广泛应用,因其复杂性和不确定性,对其进行测试显得尤为重要。传统的测试方法过于依赖单一指标,无法全面揭示深度神经网络的完整行为模式。因此,需综合考量不同的覆盖指标,以便更全面地评估模型性能。结合6种多粒度的深度神经网络覆盖指标,优化模糊测试的变异策略和种子选择等步骤,生成高质量且高覆盖率的测试用例。在MNIST和CIFAR10数据集上对4种不同复杂性的模型进行实验,将原始训练集和新生成的有效测试用例合并用于重训练模型,以提高分类准确率。实验结果显示,该方法可以显著提高覆盖率,并通过自适应重训练优化模型提高了分类准确率。
中图分类号:
| [1]YANG Z,SHI J,ASYROFI M H,et al.Revisiting neuron covera-ge metrics and quality of deep neural networks[C]//2022 IEEE International Conference on Software Analysis,Evolution and Engineering(SANER).2022:408-419. [2]XIE X,LI T,WANG J,et al.NPC:Neuron path coverage viacharacterizing decision logic of deep neural networks [J].ACM Transactions on Software Engineering and Methodology,2022,31(3):1-27. [3]AGHABABAEYAN Z,ABDELLATIF M,BRIAND L,et al.Black-box testing of deep neural networks through test case diversity [J].IEEE Transactions on Software Engineering,2023,49(5):3182-3204. [4]FAHMY H,PASTORE F,BRIAND L.HUDD:A tool to debug DNNs for safety analysis [C]//Proceedings of the ACM/IEEE 44th International Conference on Software Engineering:Companion Proceedings.2022:100-104. [5]PEI K,CAO Y,YANG J,et al.DeepXplore:automated white box testing of deep learning systems [C]//26th Symposium on Operating Systems Principles.2017:1-18. [6]XIE X,MA L,JUEFEIXU F,et al.DeepHunter:a coverageguided fuzz testing framework for deep neural networks [C]//28th ACM SIGSOFT Inter-national Symposium on Software Testing and Analysis.2019:146-157. [7]MA L,XU J F,ZHANG F Y,et al.DeepGauge:multi granularity testing criteria for deep learning systems [C]//33rd ACM/IEEE International Conference on Automated Software Engineering.2018:120-131. [8]DU X,XIE X,LI Y,et al.Deepcruiser:Automated guided testing for stateful deep learning systems[J].arXiv:1812.05339,2018. [9]YI Z B,LI S S,MA J,et al.Towards an Efficient and Robust Adversarial Attack Against Neural Text Classifier[J].Internatio-nal Journal of Pattern Recognition and Artificial Intelligence,2022,36(11):2253007. [10]MA L,XU J F,XUE M H,et al.Deepct:Tomographic combinatorial testing for deep learning systems[C]//2019 IEEE 26th International Conference on Software Analysis,Evolution and Engineering(SANER).IEEE,2019:614-618. [11]GUO H,TAO C,HUANG Z.Multi-objective white-box test input selection for deep neural network model enhancement [C]//2023 IEEE 34th International Symposium on Software Reliability Engineering.2023:521-532. [12]YUAN Y,PANG Q,WANG S.Revisiting neuron coverage for DNN testing:A layer wise and distribution-aware criterion[C]//2023 IEEE/ACM 45th International Conference on Software Engineering.2023:1200-1212. [13]KANG D.Bridging fuzz testing and metamorphic testing forclassification of machine learning [C]//Proceedings of the 30th IEEE International Conference on Consumer Electronics(ICCE 2022).2022:1-2. [14]LI Z,MA X,XU C,et al.Structural coverage criteria for neural networks could be misleading[C]//2019 IEEE/ACM 41st International Conference on Software Engineering:New Ideas and Emerging Results(ICSE-NIER).IEEE,2019:89-92. [15]WANG L,XIE X,DU X,et al.DistXplore:Distribution-guided testing for evaluating and enhancing deep learning systems [C]//Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering.2023:68-80. [16]XIAO D,LIU Z,YUAN Y,et al.Metamorphic testing of deep learning compilers [C]//Proceedings of the ACM on Measurement and Analysis of Computing Systems.2022:1-28. [17]HU Q,GUO Y,XIE X,et al.Test optimization in DNN testing:A survey [J].ACM Transactions on Software Engineering and Methodology,2024,1(22):1-41. [18]ATTAOUI M O,FAHMY H,PASTORE F,et al.DNN explanation for safety analysis:An empirical evaluation of clustering-based approaches [J].ACM Transactions on Software Enginee-ring and Methodology,2023,10(41):16-57. [19]KAUR K,SINGH E J.Reducing SSIM(structural similarity index measure) using improved edge detection technique on grey scale images[J].International Journal for Research in Applied Science and Engineering Technology,2020,8(9):504-508. [20]YANG Z,SHI J,ASYROFI M H,et al.Revisiting neuron coverage metrics and quality of deep neural networks[C]//2022 IEEE International Conference on Software Analysis,Evolution and Reengineering.2022:408-419. [21]ODENA A,OLSSON C,Andersen D,et al.Tensorfuzz:Debugging neural networks with coverage-guided fuzzing[C]//International Conference on Machine Learning.PMLR,2019:4901-4911. [22]TIAN Y,PEI K,JANA S,et al.Deeptest:Automated testing of deep-neural-network-driven autonomous cars[C]//Proceedings of the 40th International Conference on Software Engineering.ACM,2018:303-314. [23]YU J,DUAN S,YE X.A white-box testing for deep neural networks based on neuron coverage[J].IEEE Transactions on Neural Networks and Learning Systems,2022,34(11):9185-9197. [24]WANG Z,YAN M,LIU S,et al.A Review of Deep Neural Network Testing Research [J].Journal of Software,2020,31(5):1255-1275. |
|
||